Bioeconomy, biosystems and biotechnology in every day life

Prof. Dr. Constantinos E. Vorgias

The structure of our biosystem

2

The blue planet, our home

The ecosystem

Components of our ecosystem

We are seeing a tiny part of what is there

Basic components of the living organisms are the cells

The information stockpile of our biosystem

DNA>RNA

~3 meters in humans only 2% encodes proteins, the functional molecules

The human genome

To understand the entire information in the book it will take a long time

The book is open, no §,.?!

aactacaggtgcccaccaccacgcctag caatactatatttatcaagcactat anatggagaataaaaaactttttagactag agaattetataatttetacacatagtgtttaac caatgtggtaagtcttctacgagccaaaataa. tetetactaaattgettetetatteaagetgt attgagtgtctaccaccagctcctactgtt anttgtgtcccagagatggaaactacggaagttcag aatcagggacataaaaactgacttaataatggga atcagygut cacttttctcccttgtccagtggttttaaaaaaa tagtcaagactgggtaatttataaaggataacaggt gccaggcttttttaaacaaccagcactcagttgaactaa tgccaggcttttttaaa caccacctcatccccccatgggtgctgcagt tagcaccacctcaucture ctgcctctaccaccttaaaaaagcaaggtccaggagttgtt catgtgtatatacacgtgtgtatatatgtgtatatacacatatacatatgtgtatatacacatatacacatatatgtgtatatacacatatatacacatatatacacatatatacacatatatacacatatacatatatacacatatacacatatacatatatacacatatacatatataIttoetteetgttaagggetgaattig voor aagaattee aag atgcacacctgtggtgaggctgaggcaggaggctcact ccagcttgtggtactttgtcate Ictagtaatgttctaattct ttttattgtatcca

DNA: an unlimited pool of information: why? **Bacterial DNA (*106) Archeobacterial DNA(*106)** Viral DNA(*10⁴) Eucaryotic DNA(*10¹⁰) **Cell free environmental DNA Recombinant DNA-gene technology** Shuffled DNA-directed evolution Ancestral DNA (calculated) Synthetic DNA (artificial)

10

The DNA provides the essential information (genes-regulatory elements etc) to the cell machinery (proteinosynthesis) to build functional molecules: the proteins

The physical basis of life

The Laws of Thermodynamics

- 0. Two bodies in thermal equilibrium are at same T
- 1. Energy can never be created or destroyed.

 $\Delta E = q + w$

2. The total entropy of the UNIVERSE (= system plus surroundings) MUST INCREASE in every spontaneous process.

 $\Delta S_{\text{TOTAL}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$

3. The entropy (S) of a pure, perfectly crystalline compound at T = 0 K is ZERO. (no disorder)

 $S_{T=0} = 0$ (perfect xII)

The major biomolecules

Proteins=linear chains of amino acids

The structure of proteins

Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Amazing numbers: random synthesis of proteins of 300 aa length, using the 20 amino acids can create 20³⁰⁰ (~50000)

The structure of proteins

The existing proteins is a tiny fraction of the existing possibilities

The structure of lipids

The structure of carbohydrates

The structure of carbohydrates

The structure of sugars

A single bond defines the structure of polysaccharides

The structure of carbohydrates The polysaccharides are linear and branched

α-1,4 construct helical polysaccharides=storage

The structure of cellulose The structural polysaccharides are linear

B-1,4 construct linear polysaccharides=structure

The structure of chitin The structural polysaccharides are linear

B-1,4 construct linear polysaccharides=structure

The rest: small metabolites and trace elements

24

Energy in biosystems

The cellular metabolism

Metabolism

The cellular metabolism is a very complicated network of simple organic chemistry reactions, the metabolic pathways

The cellular metabolism is controlled in various ways

28

The energy is capture either in high energy bonds (ATP) or in reduced molecules (NADPH, NADPH, FADH₂)

The cell factory mostly recycle the biomolecules very efficiently

Biotechnology: so young and so old

How Old Is Biotechnology ?

10,000 BC Domesticating Crops

6,000 BC Brewing Beer

Domesticating Animals 8,000-9,000 BC

4,000 BC Leavening Bread

1880's Production of Vaccines

1940's Production of Antibiotics

1980's Use of genetically modified organisms

Northeast Biomanufacturing Center and Collaborative

www.Biomanufacturing.org

The cell factory the major tool of modern ³² biotechnology

Biotechnology started empirically

The most important biotechnological application

 $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$

The most usual biotechnological applications

Traditional vs Modern Biotechnology

Pharmaceutical biotechnology

Traditional biotechnology Mo -secondary metabolites -re

-antibiotics

-steroids

-vitamins, etc

Modern biotechnology -recombinant proteins -monoclonal antibodies -gene therapy -transgenic organisms

Synthetic biology-directed evolution New biocatalysts

Synthetic biology-directed evolution New biocatalysts of universal interest

Article

pubs.acs.org/JACS

Toward Efficient Enzymes for the Generation of Universal Blood through Structure-Guided Directed Evolution

David H. Kwan,^{†,‡} Iren Constantinescu,^{§,||} Rafi Chapanian,^{§,||} Melanie A. Higgins,[⊥] Miriam P Kötzler,^{†,‡} Eric Samain,[#] Alisdair B. Boraston,[⊥] Jayachandran N. Kizhakkedathu,^{‡,§,||} and Stephen G. Withers^{*,†,‡}

[†]Centre for High-Throughput Biology, [‡]Department of Chemistry, [§]Centre for Blood Research, [∥]Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 [⊥]Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 [#]Centre de Recherches sur les Macromolécules Végétales, Centre National de la Recherche Scientifique, Grenoble Cedex 9, France

BP 53, 38041

Biotechnology and Nanotechnology

Marine environment is "the bioresource" for the future

Synthetic biology: a "sport" similar to climbing

Synthetic Biology and Bioeconomy

Science & Society Synthetic Biology in the Driving Seat of the Bioeconomy

Yensi Flores Bueso^{1,2,3,4,*} and Mark Tangney^{1,2,3,*}

Synthetic biology is revolutionising the biotech industry and is increasingly applied in previously unthought-of markets. Here, we discuss the importance of this industry to the bioeconomy and two of its key factors: the synthetic biology approach to research and development (R&D), and the unique nature of the carefully designed, stakeholder-inclusive, communitydirected evolution of the field.

The take home message

We have to think simple to solve complicated problems.

Nature has the time to play its own "Lego" and find wise and sustainable solutions.

We do not have the time to do so, therfore we have to learn from nature and copy.

The take home message

The take home message

Indicators for a circular economy

Bioeconomics M.Sc

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Bioeconomics M.Sc.

Διιδρυματικό / Διατμηματικό Πρόγραμμα

bioeconomics.edu.gr

Bioeconomics M.Sc. Διιδρυματικό / Διατμηματικό Πρόγραμμα

The Bioeconomy in Europe - Hype or Reality? **Perspectives for Greece**

Το ΠΜΣ στη «ΒΙΟ-ΟΙΚΟΝΟΜΙΑ» διοργανώνει εκδήλωση παρουσίασης και έναρξης του Προγράμματος

Κεντρικός Ομιλητής

Dr. Christian Patermann

τέως Διευθυντής του Προγράμματος για την "Έρευνα στη Βιοτεχνολογία, Γεωργία και Διατροφή" της Γενικής Γραμματείας Έρευνας της Ευρωπαϊκής Επιτροπής και νυν Σύμβουλος της Γερμανικής Κυβέρνησης σε θέματα Βιο-Οικονομίας

> Πέμπτη, 1η Ιουνίου 2017 και ώρα 18:00 Αίθουσα Συνεδρίων Πανεπιστημίου Πειραιώς

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΟΝ

1st International Conference on Bioeconomy Education

End of April 2018

Tolo, 150 Km from Athens

Thank you

51