


Cross visit Czech Republic 30.11-1.12. 2020

Jiří Masojídek

Centre ALGATECH, Institute of Microbiology, Czech Academy of Science, Třeboň







# **Introduction to Microalgae Biotechnology**

#### Jiří Masojídek

Laboratory of Algal Biotechnology, Centre ALGATECH Institute of Microbiology, Czech Academy of Science, Třeboň

Faculty of Science, University of South Bohemia, České Budějovice

e-mail: masojidekj@seznam.cz













## Algatech Třeboň - Centre for Algal Biotechnology - since 2011 Laboratory for Algal Research - est. 1960 in Třeboň













### **R&D Topics in Laboratory of Algal Biotechnology**

- Screening and selection of microalgae strains
- Design and construction of various cultivation units
- Optimisation of culturing regimes for microalgae
- Production of biomass as food and feed additives
- Isolation and characterisation of bioactive compounds analytical techniques

Keywords: Macroalgae vs. Microalgae,

Mass culture vs. Phytoplankton population



# Macroalgae

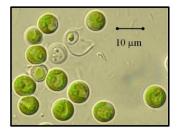
VS.

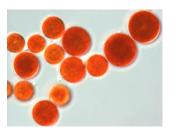
# Microalgae

Kelps, seaweeds – dimensions of thallus in cm or m (Ulva, Porphyra, Gracilaria)

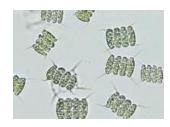






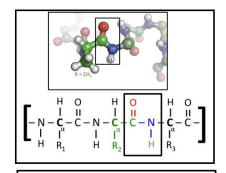



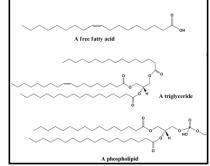

Photosynthetic microorganisms - prokaryotic cyanobacteria & eukaryotic algae)

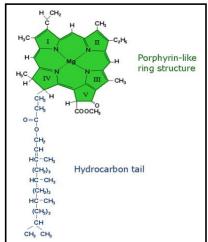

Dimensions of cells in ~1-30 µm



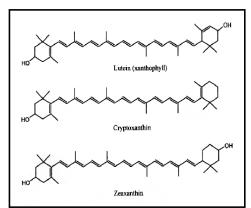




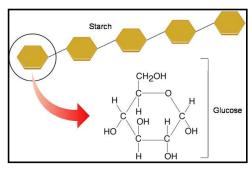



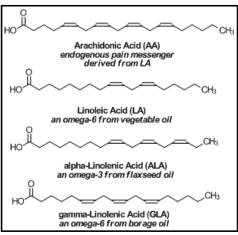



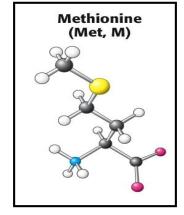




## Microalgae – Single-Cell Solar Factory







- Proteins and essential AAs
  - Polysaccharides
- Lipids and fatty acids (PUFA)
  - Pigments (carotenoids)
    - Antioxidants
    - Minerals and vitamins
      - Fiber
- Enrichment by various elements Se, I, Cr, Zn, Fe



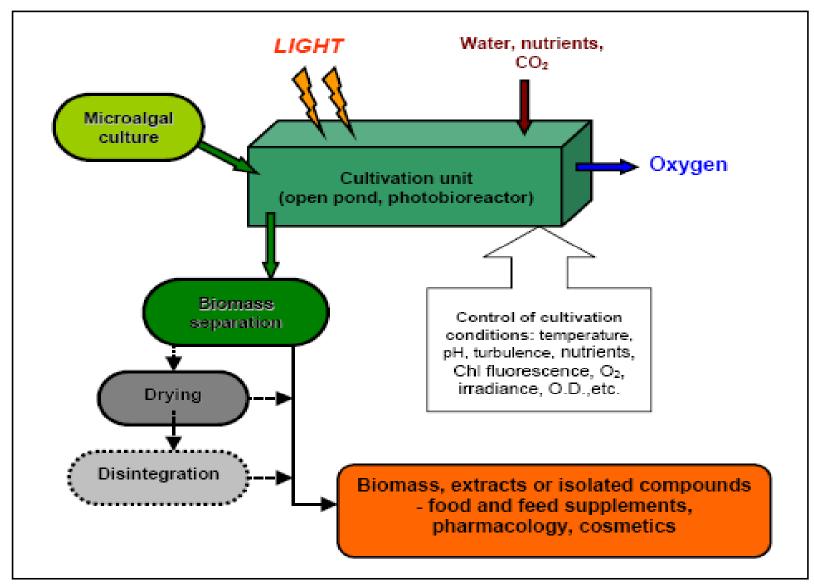






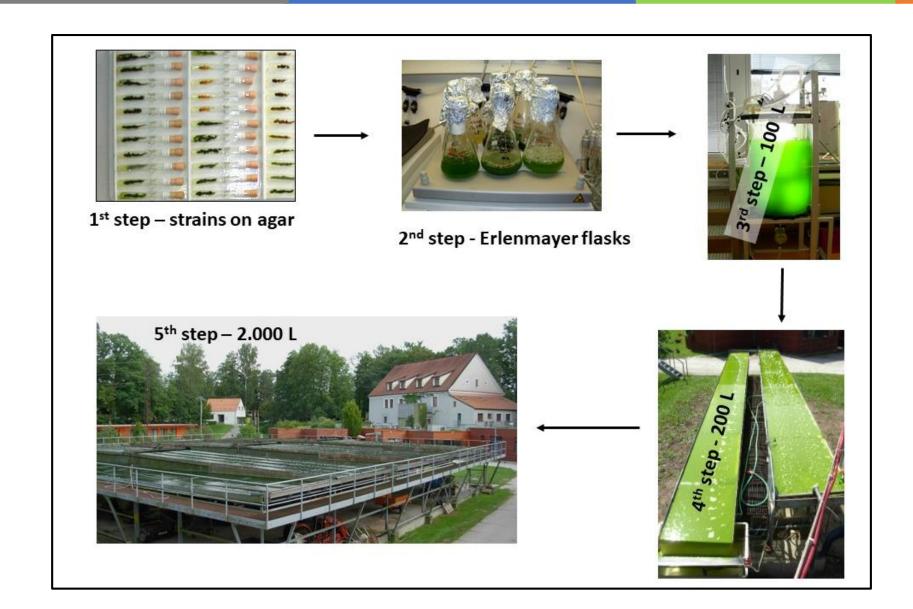





# **Advantages of Microalgae**

#### Thousands of strains in collections

- Fast reproductive cycles fast growth (doubling time of several hours)
- Single-celled micro-organisms minimum internally competitive metabolic functions (as compared to crops) – high photosynthetic efficiency
- Grow in aquaculture in man-made cultivation systems cultivation process can be well controlled and manipulated
- Mass cultures of microalgae in photobioreactors dense, well-mixed, homogenous suspensions of cells in man-made cultivation systems with sufficient supply of light and nutrients - represent artificial production system
- Very different from natural phytoplankton populations

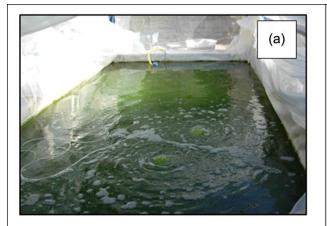



### **Schematic Diagram of Mass Production**





# The scale-up of Microalgae Production: starting with agar and flask culture up to pilot and production units

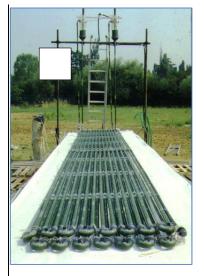





## **Cultivation Systems for Microalgae Growth**

#### **Open Outdoor Systems**

#### Closed and Semiclosed Outdoor Photobioreactors




















### **Goal of Microalgae Biotechnology**

The major goal of microalgal biotechnology:

to achieve higher production of biomass, or valuable compounds per illuminated surface or volume of culture, i.e. to optimise/maximise

the culture growth and productivity



## **Cultivation Areas of Microalgae**

Production >30,000 metric tons, large-scale outdoor systems

Major producers Asia (Japan, China, Taiwan, Thailand, South Korea, India), North Americas (Mexico, USA), Europe, South Africa, Australia





## **Use of Microalgae**

#### Food & feed additives

- Health food, supplements
- Feed
  - ✓ Chicken, eggs
  - ✓ Ornamentals fish, birds
- Cosmetics
- Pharmacology



#### **Technology & Environment**

- Wastewater treatment (removal of N, P, heavy metals, etc.)
- Agriculture use biostimulants, biopesticides, biofertilisers
- Production of bio-fuels and sources of chemicals





### The Current Industrial-scale Applications of Most Exploited Microalgae

| Product and Application                       | Status      | Microalga                                                                                           |
|-----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|
| Health food, food and feed supplements        | Established | Arthrospira (Spirulina), Chlorella                                                                  |
| β-Carotene                                    | Established | Dunaliella                                                                                          |
| Astaxanthin                                   | Established | Haematococcus                                                                                       |
| Live food and feed supplements in aquaculture | Established | Nannochloropsis, Isochrysis, Chaetoceros, Pavlova,<br>Tetraselmis, Phaeodactylum, Skeletonema, etc. |
| PUFAs                                         | Established | Phaeodactylum, Nannochloropsis                                                                      |
| Xanthophylls (lutein, zeaxanthin)             | Developing  | Scenedesmus, Chlorella                                                                              |
| Polysaccharides                               | Developing  | Porphyridium                                                                                        |
| Oils, biofuels                                | Developing  | Botryococcus, Nannochloropsis, Phaeodactylum,<br>mutants of Chlamydomonas & Synechocystis           |
| Biopharmaceuticals                            | Developing  | Nostoc, Cylindrospermum, Anabaena                                                                   |
| Biostimulants, biopesticides                  | Developing  | Chlorella, Scenedesmus, Nostoc                                                                      |



## **Downstream Processing**

Downstream processing is any treatment of culture after cultivation to concentrate and purify products.

It follows a general sequence of steps:

- **1. Harvesting** cell removal (centrifugation, floculation, filtration, cross-flow filtr.)
- 2. **Desintegration** destroying of the cell walls to release intracellular compounds
- 3. Dewatering drying, lyophilization, precipitation
- **4. Primary isolation** to remove components with properties significantly different from those of the products (adsorption, extraction, precipitation, hydrolysis).
- **5. Purification**. Highly selective (chromatography, ultrafiltration, fractionation)
- **6. Finalisation** (crystallization, followed by centrifugation or filtration and drying, tableting, packing). Typical for high-quality products such as pharmaceuticals.



# **ALGATECH projects**





# **ALGENETICS**

#### Czech - Austrian Centre for Algal Biotechnology (2017-2019)

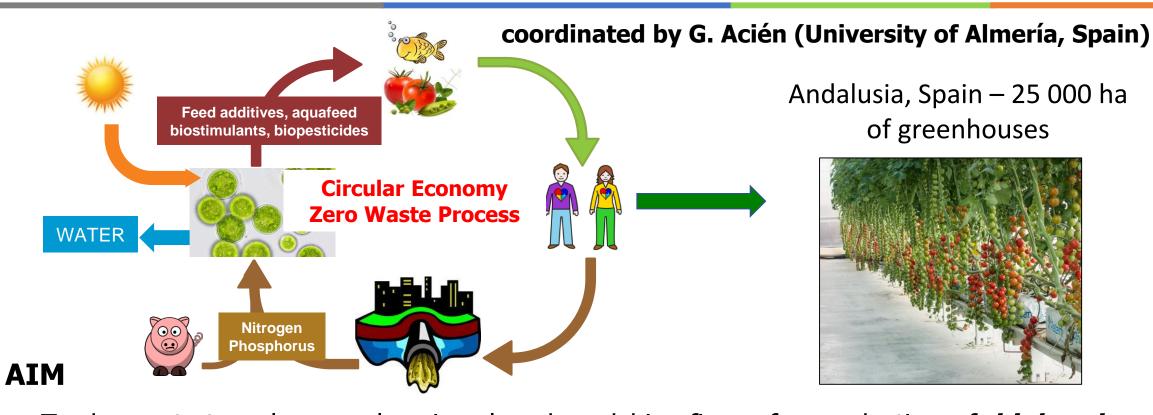
Research objective: Construction and characterisation of genetically improved /modified strains of the cyanobacterium *Synechocystis* PCC 6803 as a potential producers of valuable energetic compounds – bioethanol, glycogen and starch

Cross-boarder collaborative research between

- FH OÖ Forschungs & Entwicklungs GmbH in Wels
- Centre Algatech, Institute of Microbiology in Třeboň

Strategic Partners:

FH OÖ Studienbetriebs GmbH University of South Bohemia in České Budějovice

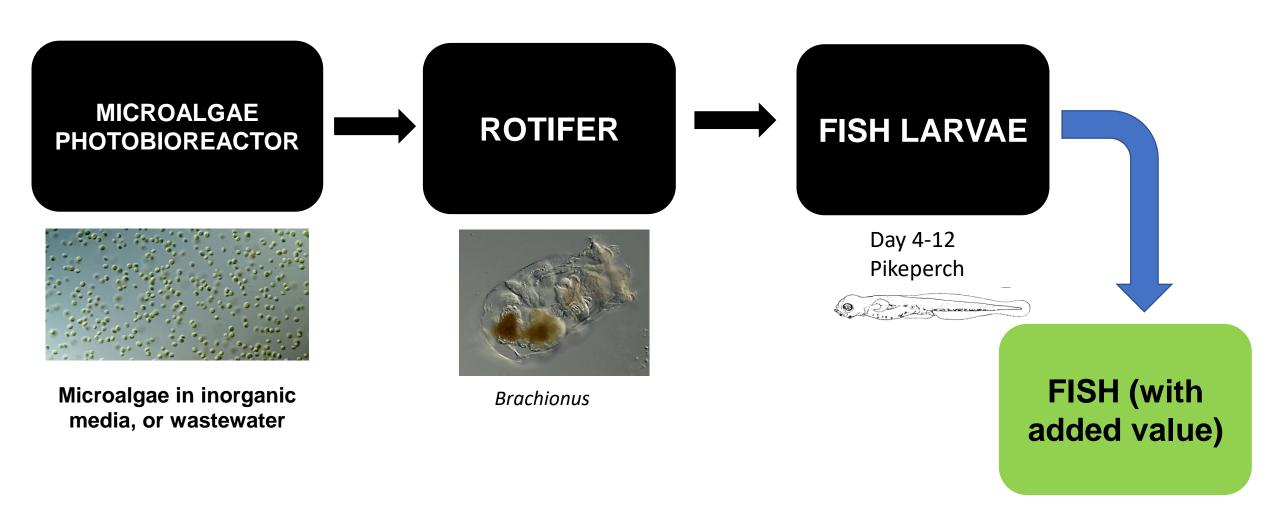







# **EU H2020 SABANA = Sustainable Algae Biorefinery for Agriculture aNd Aquaculture (2016-2021)**






- To demonstrate a large-scale microalgae-based biorefinery for production of high-value products (biostimulants, biopesticides, aquafeed additives) as well as low-value products (biofertilizers, fish feed) recovering nutrients from wastewaters (sewage, centrate and pig manure) in continuous mode all year around (Spain)
- DEMO scale plants 1 and 5 ha for biomass production and processing



#### **Project Algae4Fish – Interreg Proigramme Czech Republic – Austria (2020-2022)**

### Scheme of the project









# Horizon 2020 Bio Based Industry project MULTISTR3EAM (2020-2024)

A sustainable multi-strain, multi-method, multi-product microalgae biorefinery integrating industrial side streams to create high-value products for food, feed and fragrance

Coordinator: A4F Algafuel SA, (Portugal)

- Sustainable products from microalgae for food, feed and cosmetics
- Dedicated to multi-strain, multi-process and multi-product biorefinery
- In-demand products: lipids including omega-3 and omega-6 fatty acids for feed and food applications
- Pigments such as carotenoids and phycocyanin for food and feed applications
- Low molecular weight organic compounds for fragrance applications

IMIC role: heterotrophic and phototrophic cultivation, mutagenesis, countercurrent chromatography



#### **Acknowledgements**

- Karolína Ranglová, Soňa Pekařová, Gergély Lakatos, Tomáš Grivalský, Richard Lhotský, Centre Algatech, Institute of Microbiology, Třeboň
- Gabriel Acién, Cintia Gómez, Marta Barceló, University of Alméria, Spain
- Vince Ördög, Széchenyi István University in Mosonmagyaróvár, Hungary
- **Giuseppe Torzillo**, **Margarita Da Silva**, Istituto per lo Studio degli Ecosistemi CNR, Sesto Fiorentino, Italy

#### **Funding**

- EU H2020
- Interreg At-Cz














# POWER4BIO website and social media







www.power4bio.eu







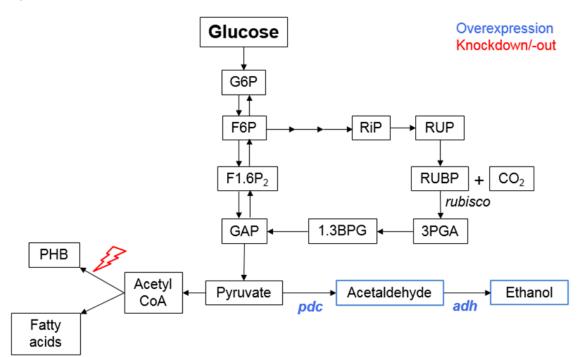
# Thank you for attention

Jiří Masojídek Centre ALGATECH, Institute of Microbiology Czech Academy of Science, Třeboň

(masojidekj@seznam.cz)

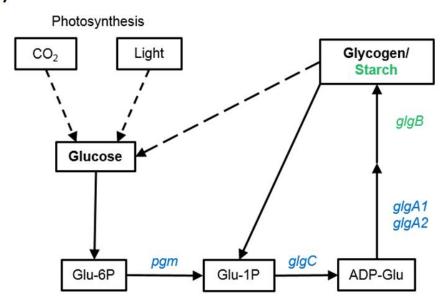









#### Genetically Modified Synechocystis PCC 6803 Strains for Bioethanol and Starch Production


#### Tomáš GRIVALSKÝ, Gergely LAKATOS and co-workers

#### a) Ethanol Production



- Pyruvate decarboxylase → pdc (Zymomonas mobilis)
- Alcohol dehydrogenase → adh (Synechocystis PCC6803)
- Polyhydroxybutyrate (PHB)

#### b) Starch Production



Overexpression Exchange

- Phosphoglucomutase (PGM) → pgm
- ADP-Glucose pyrophosphorylase (AGP)→ glgC
- Glycogen synthases (GS) → glgA1, glgA2
- Eukaryotic branching enzyme → glgB

