Global and U.S. Trends in Agricultural R&D in a Global Food Security Setting

Julian M. Alston

University of California, Davis

OECD Conference on

Agricultural Knowledge Systems: Responding to Global Food Security and Climate Change Challenges

> OECD, Paris June 15-17, 2011

Department of Agricultural and Resource Economics

Long-run historical perspectives

Long-term World Population – 10,000 BC to 2150

Growth Rates of Global Population, Agricultural Land Area, and Value of Agricultural Production, 1908-2008

World Population Projections to 2100

The Supply-Side Challenge

Farm Productivity

- To increase agricultural productivity fast enough to feed 9-10 billion people within the next 40 years, in the face of
 - competing demands for land and water
 - competing demands for biofuels
 - changing climate
 - co-evolving pests and diseases

Agricultural R&D

 To conduct enough of the right types of agricultural R&D and get the resulting innovations adopted soon enough to meet the farm productivity challenge

Today's issues: investing in R&D and productivity

- 1. High rates of return to agricultural R&D
 - Implies persistent underinvestment—why is it so?

- 1. High rates of return to agricultural R&D
 - Implies persistent underinvestment—why is it so?
- 2. Shifting patterns of public support for R&D
 - High-income countries
 - Slowdown in spending growth
 - Diminishing share for on-farm productivity enhancement
 - A different pattern in Brazil and China

- 1. High rates of return to agricultural R&D
 - Implies persistent underinvestment—why is it so?
- 2. Shifting patterns of public support for R&D
 - High-income countries
 - Slowdown in spending growth
 - Diminishing share for on-farm productivity enhancement
 - A different pattern in Brazil and China
- 3. Shifting productivity patterns
 - Productivity slowdown in high-income countries
 - > A different pattern in Brazil and China

- 1. High rates of return to agricultural R&D
 - Implies persistent underinvestment—why is it so?
- 2. Shifting patterns of public support for R&D
 - High-income countries
 - Slowdown in spending growth
 - Diminishing share for on-farm productivity enhancement
 - A different pattern in Brazil and China
- 3. Shifting productivity patterns
 - Productivity slowdown in high-income countries
 - > A different pattern in Brazil and China
- 4. Implications—institutional reform required?
 - Enhance rates of research investment, restore productivity growth, reduce pressure on natural resource stocks

Rates of return to agricultural R&D

Stylized Representation of Research Benefits and Costs

Meta Evidence from Literature Prior to 2000

Internal rate of return

Source. Alston, J.M., C. Chan-Kang, M.C. Marra, P.G. Pardey, and T J Wyatt. *A Meta-Analysis of the Rates of Return to Agricultural R&D: Ex Pede Herculem*. IFPRI Research Report No. 113, 2000.

Key Points from the Meta-Analysis

Challenge:

– Which research, conducted by whom, and when was responsible for observed productivity growth?

Attribution Issues

- Long time lags in knowledge creation and adoption
- Spatial spillovers among states and countries
- What is the relevant counterfactual alternative?
- Studies have tended to overstate rates of return as a result of attribution biases . . . but true returns are still very large

New Evidence

Persistence Pays: U.S. Agricultural Productivity Growth and the Benefits from Public R&D Spending. J.M. Alston, M.A. Andersen, J.S. James, and P.G. Pardey Springer, January 2010

New Evidence

Persistence Pays: U.S. Agricultural Productivity Growth and the Benefits from Public R&D Spending. J.M. Alston, M.A. Andersen, J.S. James, and P.G. Pardey Springer, January 2010

Challenges

- Spillovers
- Long R&D Lags
- Role of maintenance research

Illustrative Technology Development Lags

Share of acreage planted to different types of corn varieties—years to reach 80 % adoption

Aggregate R&D-Productivity Lag

Source: Alston, Pardey and Ruttan (2008) ; and Alston et al. (2010)

The Tyranny of the Red Queen

- Crop varietal innovations masked by
 - Changing location of production => adaptive research
 - Co-evolving pests and diseases => maintenance research
 - The "Red Queen" effect

"Well, in our country," said Alice, still panting a little, "you'd generally get to somewhere else — if you run very fast for a long time, as we've been doing."

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"

- Through the Looking Glass

Marginal Returns to U.S. Public Agricultural R&E

Returns to	Benefit-Cost Ratio (3% real discount rate)			
	Own-State	National		
	ratio			
State R&E				
48-State Average	21.0	32.1		
48-State Minimum	2.4	9.9		
48-State Maximum	57.8	69.2		
USDA Research		17.5		

Benefit cost ratios seem very big . . .

Marginal Returns to U.S. Public Agricultural R&E

Returns to	Benefit-Co (3% real disc	ost Ratio count rate)	Conventional Real Internal Rate of Return		
	Own-State	National	Own-State	National	
	ratio)	percent	per year	
State R&E					
48-State Average	21.0	32.1	18.9	22.7	
48-State Minimum	2.4	9.9	7.4	15.3	
48-State Maximum	57.8	69.2	27.6	29.1	
USDA Research		17.5		18.7	

Benefit cost ratios seem very big . . . but the implied IRRs are comparatively modest reflecting the very long lags and other modeling details (improvements)

U.S. science spending

U.S. Science Spending, 2008

Source: Dehmer and Pardey (2011); Pardey and Chan-Kang (2011)

U.S. Agricultural R&D, 1950–2009

Billions of dollars (2005 prices)

Source: Dehmer and Pardey (2011)

Agricultural R&D Expenditures, 1950-2007

9 4.2 Total Ag R&D 1.6 (1.1) 8 1.0 **Total** 3.8 Public Ag R&D 1.5 (1.0) 7 1.1 4.7 Private Ag R&D 1.9 (1.4) 6 1.1 Average Annual Real Growth (Percentage) 1951-1969 ■ post-1970 ■ post-1990 5 Private 4 3 **Public** 2 1 0 1950 1960 1970 1980 1990 2000

Billions of dollars (2000 prices)

U.S. Private Agricultural R&D, 1950–2009

Source: Dehmer and Pardey (2011)

USDA Role in Funding SAES Research

percentage

Source: Pardey et al. (2011) with data from USDA, CRIS (various years)

Farm Productivity Share of SAES Research

Source: Pardey et al. (2011) with data from USDA, CRIS (various years)

Global science spending

Global Science Spending Landscape, 2000

Total Science

Food & Agricultural R&D

Note: Spending in 2005 prices

Source: Dehmer and Pardey (2011); Pardey and Chan-Kang (2011))

Food and Agricultural Research Intensity Ratios

Panel a: Public

Panel b: Public and Private

Source: Pardey and Pingali (2010).

Public Food and Agricultural Research Expenditures

Source: Pardey and Pingali (2010).

Farm productivity patterns

Sources . . .

The Shifting Patterns of Agricultural Production and Productivity Worldwide

March 2010 (CARD, Iowa State University, MATRIC e-book)

Julian Alston, Bruce Babcock, and Philip Pardey (editors)

- 23 authors, 15 chapters
- 5 chapters => global overview, general issues
- 10 country-specific chapters
 - Argentina
 - Australia and New Zealand
 - Canada
 - China
 - India
 - Indonesia
 - Former Soviet Union and Eastern Europe
 - South Africa
 - United Kingdom
 - United States

Edited by Julian M. Alston, Bruce A. Babcock, and Philip G. Pardey

Sources . . .

Diverging Agricultural Productivity Paths—International Competitiveness and Food Security in the Long Run

(theme in Choices, Fall 2009)

Julian Alston and Philip Pardey (theme editors)

Six articles:

- Theme overview
- Global patterns
- Canada
- China
- Former Soviet Union and Eastern Europe
- United States

Main points

- Evidence of a significant pervasive slowdown in agricultural productivity growth since 1990 or thereabouts
- China is an important exception with faster growth reflecting institutional change and other factors
- The converse applies for FSU and Central European countries
- Similar patterns emerge using various measures
 - Commodity prices
 - Crop yields
 - Production per unit of land or labor
 - Multifactor productivity measures where available
 - Australia, Canada, United States, United Kingdom

Global Crop Yield Growth Rates, 1961-2007

	Ma	nize	Wh	eat	Rie	ce	Soyb	eans
Group	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07
				(percent	per year)			
World	2.20	1.77	2.95	0.52	2.19	0.96	1.79	1.08

Global Crop Yield Growth Rates, 1961-2007

	Ma	aize	Wheat		Rie	Rice		Soybeans	
Group	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07	
				(percent	per year)				
World	2.20	1.77	2.95	0.52	2.19	0.96	1.79	1.08	
High Income	2.34	1.48	2.47	0.06	1.07	0.54	1.14	0.02	

Global Crop Yield Growth Rates, 1961-2007

	Ma	aize	Wheat		Rie	Rice		Soybeans	
Group	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07	1961-90	1990-07	
				(percent	per year)				
World	2.20	1.77	2.95	0.52	2.19	0.96	1.79	1.08	
High Income	2.34	1.48	2.47	0.06	1.07	0.54	1.14	0.02	
Middle Income	2.41	2.12	3.23	0.85	2.54	0.81	3.21	2.08	
Low Income	1.07	0.65	1.32	2.15	1.46	2.16	2.63	0.00	

Growth in Agricultural Land and Labor Productivity, 1961-2005

	Land Pro	ductivity	Labor Productivity		
Group	1961-90	1990-05	1961-90	1990-05	
World	2.03	1.82	1.12	1.36	
excl. China	1.90	1.19	1.21	0.42	
excl. China & USSR	1.91	1.57	1.13	0.73	

U.S. agricultural productivity data

- Long-term project led by Phil Pardey
 - detailed state-specific data on
 - 74 categories of outputs
 - 58 categories of inputs
 - 48 contiguous states
 - long series (1949-2002)
 - soon to be released
- Currently updating to 2007
- MFP = Total Output / Total Input

U.S. Agricultural Productivity, 1949-2002

U.S. Agricultural Productivity, 1949-2002

U.S. Agricultural Productivity, 1949-2002

MFP Growth Rates, 1949-2002 and 1990-2002

1949-2002

1990-2002

U.S. Multifactor Productivity, 1910-2007

StePP Production Accounts
utputs
Crops 61
Livestock (9)
Miscellaneous (4)
puts
Land (3)
Cropland, irrigated cropland, pasture and grassland
Labor (32)
Family labor
Hired labor
Operator labor (30)
Education: 0–7 years, 8 years, 1–3 years of high school,
4 years of high school, 1–3 years of college, 4 years or more of college
Age: $25-34$, $35-44$, $45-54$, $55-64$, or 65 or more years
of age
Capital (12)
Machinery (6)
Automobiles combines mowers and conditioners
pickers and balers tractors trucks
Biological capital (5)
Breeding cows chickens ewes milking cows sows
Buildings
Materials (11)
Electricity nurchased feed fuel hired machines
pesticides nitrogen phosphorous potash repairs seeds
miscellaneous nurchases

Real U.S. Commodity Prices, 1924-2008 (Deflator = CPI-U)

180 160 Rice Soy 140 Wheat Maize 120 100 80 60 40 20 n 924

Index = 100 in 1924

Growth Rates, Percent per Year

Period	Commodity						
	Maize	Wheat	Rice	Soybean			
924-2005	-1.08	-0.73	-1.53	-1.17			
950-2005	-2.61	-2.16	-2.51	-1.56			
975-2005	-3.93	-3.30	-3.68	-2.59			
1975-1990	-4.45	-3.59	-4.84	-2.89			
1990-2005	-3.22	-0.63	-1.96	-2.28			
2000-2005	-2.04	1.59	1.10	1.31			

60 percent decline since mid 1970s!

What will commodity prices do over the next 40 years?

A return to the rapid real declines of the 1970s and 1980s?

A continuation of the recent pattern?

What are the key determinants?

Policy Options

- Do nothing
 - Wasted opportunity (high rates of return)
 - Declining competitiveness (for most developed countries)
 - Worsening world food supply and demand balance
 - from the perspective of the world's poor
 - in terms of implications for natural resource stocks
- Reinvigorate public investments in agricultural R&D
 - Enhance government commitment to agriculture
 - Shift priorities within the agriculture budget (e.g., R&D vs subsidies)
- Encourage private investments in agricultural R&D
 - Enhance IPRs (e.g., end-point royalties)
 - Strengthen co-financing arrangements and institutions (e.g., RDCs)

Selected Sources

Alston, J.M., M.A. Andersen, J.S. James, and P.G. Pardey. *Persistence Pays: U.S. Agricultural Productivity Growth and the Benefits from Public R&D Spending*. New York: Springer, 2010.

Alston, J.M., BA. Babcock and P.G. Pardey. *The Shifting Patterns of Agricultural Production and Productivity Worldwide*, Ames IA: Iowa State University, CARD-MATRIC e-book, 2010.

Pardey, P.G. and J.M. Alston. *U.S. Agricultural Research in a Global Food Security Setting*. A Report of the CSIS Task Force on Food Security. Washington D.C.: Center for Strategic International Studies, January 2010.

Pardey , P.G. and P.L. Pingali. "Reassessing International Agricultural Research for Food and Agriculture." Report prepared for the Global Conference on Agricultural Research for Development (GCARD), Montpellier, France, 28-31 March 2010.

jmalston@ucdavis.edu