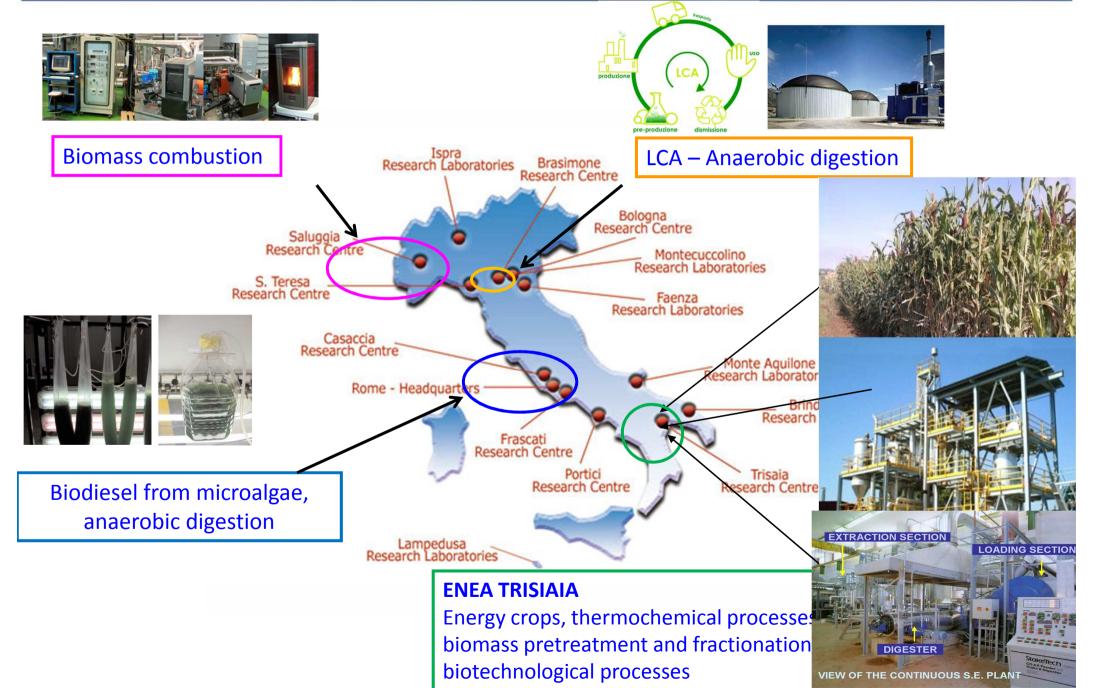


LIGNOCELLULOSICS-DERIVED CARBOHYDRATES AS PLATFORM MOLECULES FOR THE PRODUCTION OF BIOFUELS AND BIOBASED PRODUCTS


Isabella De Bari ENEA CR TRISAIA, ITALY

IFIB 25-26 September 2014, Genova

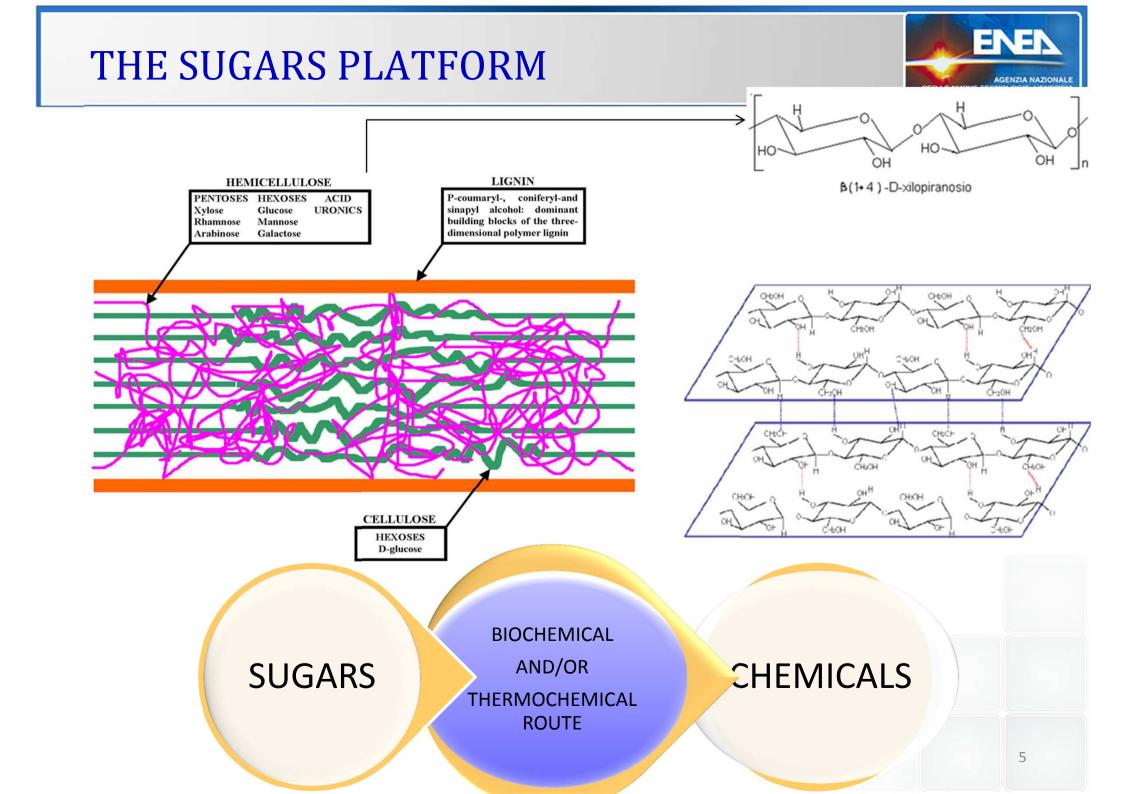
ENEA'S RESEARCH CENTRES WITH ACTIVITIES IN THE BIOENERGY/BIOREFINERIES SECTOR

INTERNATIONAL MEMBERSHIPS AND PARTNERSHIPS

- * Member of the Italian and European **technological platforms** on biofuels
- * Member of the **Biobased-based Industries** Initiative (BBI)
- Member of the Italian cluster on the green chemistry (SPRING)
- Member of the IEA bioenergy tasks 33 on the gasification and 42 on bio refineries
- Founding member of EERA (European Energy Research Alliance)

Government Agency for Cellulose and Paper, State Printing Office
COMET Biorefining (Canada)
CRF (FIAT Research institute)
PCA (Pegeout)
PCA (Pegeout)
RENAULT(France)
CNRS/IRC (France)
QUB (Queen University of Belfast)
UPAT (University of Patras)
ECN (Netherlands) VTT (Finland)
Lund University (Sweden)
Risoe (Denmark)
Nedalco (Holand)
Roal (Holand)
Budapest University
BIOCHEMTEX
NOVAMONT
VERSALIS
Intervention

Lignocellulosics feedstocks



Lignocellulosic biomass = hardwood, softwood, herbaceous crops, agricultural straws, residues from forest thinning, etc.

The total potential of cellulosic wastes and residues in the EU ≈225 Mtonnes/yr

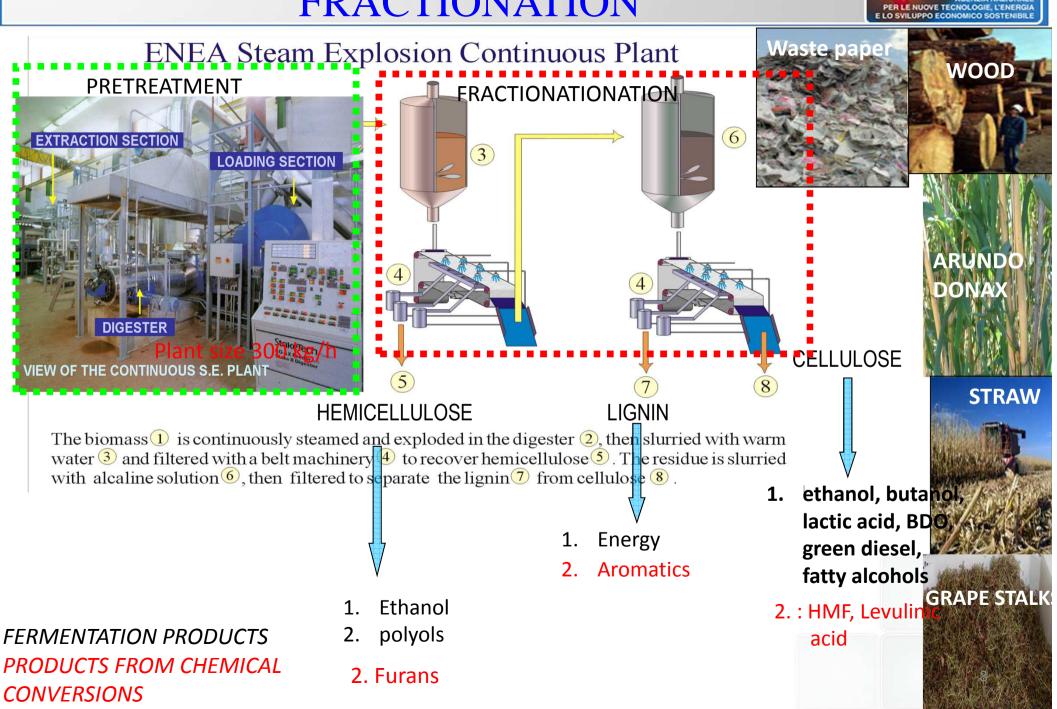
BIOMASS POTENTIAL IN ITALY AND AVAILABLE BIOMASS (energy in PJ)

			(01.01.3	,		L	
	[10]	[40]	[38]	[39]	[41]	[42]	
Forestry	167	38	180	247	121	544	
direct wood	167	38	138	176	100	448	
indirect wood	0	0	38	71	21	96	
Agriculture	272	406	502	611	285	234	
crops	67	406	373	188	13	4	
by-products	205	0	130	423	272	230	
Waste	100	25	113	201	176	67	
MSW	75	25	50	75	92	17	
industrial	25	0	50	100	42	42	
sewage sludge	0	0	13	25	8	8	
Total	540	469	783	1055	553	846	
urce:							
enewable Energy 57 (2013) 448-461							
National Renewable Energy Action Plans, 2011							
		07			the ENEA'	s ITALIAN BI	OMASS AT

BIOCHEMICAL ROUTE

FERMENTATION PRODUCTS	DETAILS	APPLICATIONS	
ALCHOLS	Ethanol	ETBE, poly-ethylene	
ALOHOLO	Butanol	Fuels, chemicals	
	2,3-Butanediol, 1,4-	Solvent, fuel,	
DIOLS	Butandiol	polymers/polyesters, fine	
		chemicals	
MICROBIAL LIPIDS	Tryacylglycerides	Fuel	
	Succinic a.	Tetrahydrofuran, 1,4 BDO, adipic acid, polyesters	
ORGANIC ACIDS	Itaconic a.	Polymers, resins, plastics,	
	Lactic. A.	Lactides/PLA	
TERPENOIDS	Farnesene	jet fuel component	
POLYHYDROXYALKANOATES	Polyhydroxybutyrate	Polyesters, plastics	
	Lysine	ϵ -caprolattame-> nylon 6	
AMINO-ACIDS	Phenylalanina	styrene	
	Aspartic acid	nylon 2,6 6	

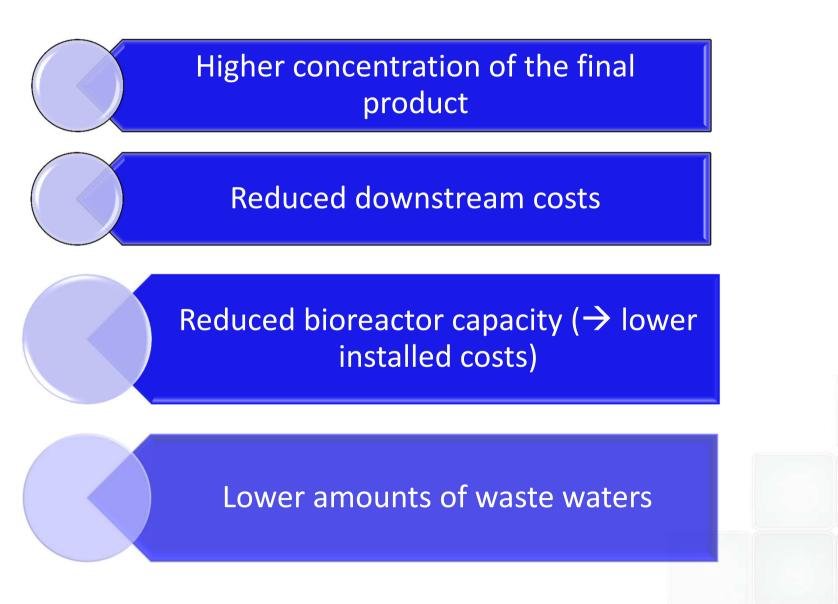
THE MAIN STEPS IN THE BIOCHEMICAL ROUTE


3

SYRUPS Process performances depends on: Selection of effective pretreatment conditions

Development of high gravity bioprocesses

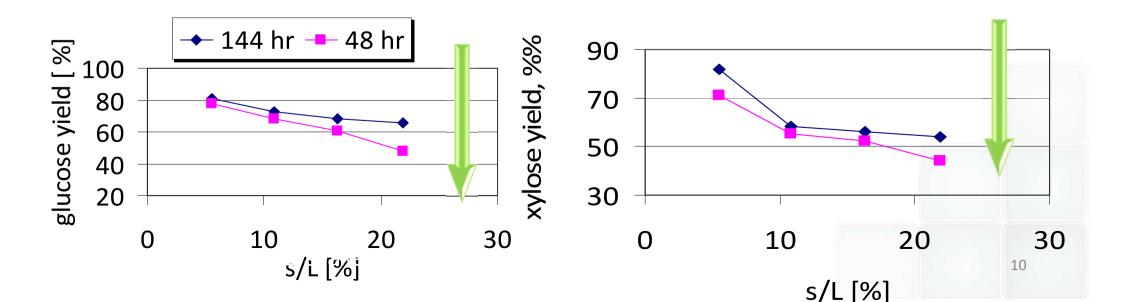
BIOMASS PRETREATMENT AND FRACTIONATION


ENE

PRODUCTION OF CONCENTRATED SYRUPS

High gravity hydrolysis = process in which the solids content is above 20%

THE CHALLENGES



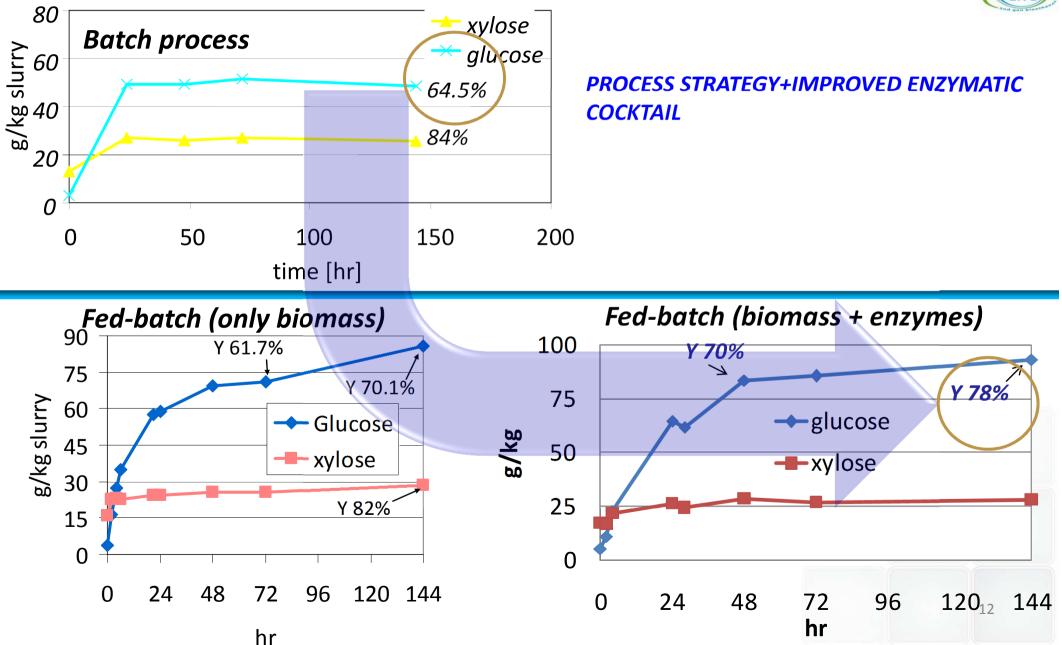
The Challenges of high gravity hydrolysis: □High viscosities → mass transfer limitations → poor mixing □Inhibition by end-products

The Challenges of high gravity fermentation:

- High concentration of microbial inhibitors
- □ Osmotic stress due to high solutes concentration
- Toxic effect of the product (synergistic inhibition)

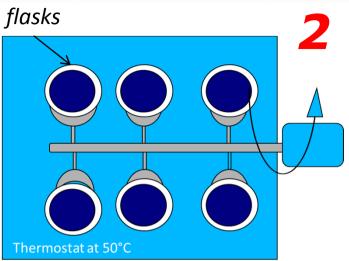
High gravity conditions reduce the process yields

- 1.Optimize the enzymatic mix and the process conditions
- 2.Optimize the bioreactors feeding strategies and reactor geometry/mixing
- 3.Find the optimal process strategy (SSF, SHF, hybrid process)
- 4. Develop robust fermentation processes

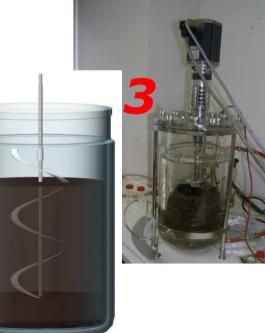


OPTIMIZATION OF THE FEEDING STRATEGY

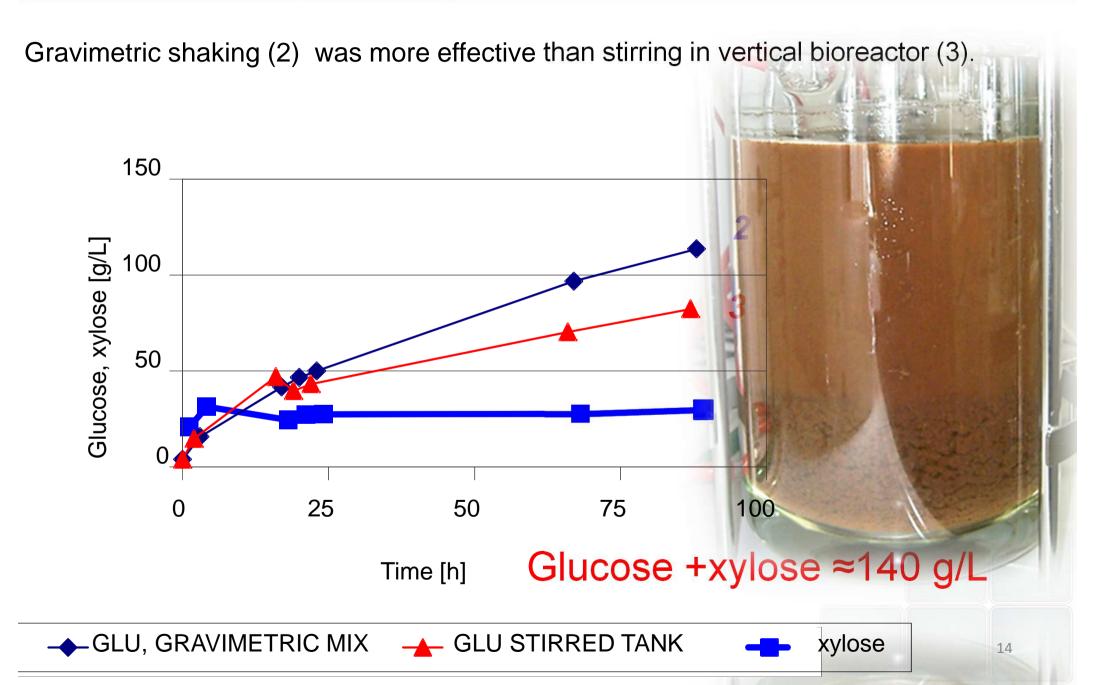
ENE



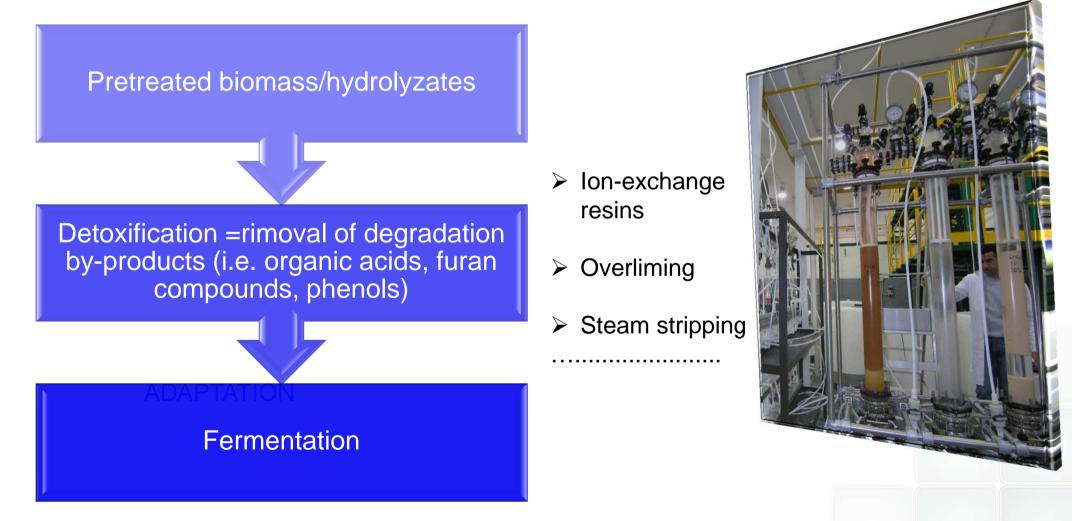
BIOREACTOR GEOMETRY



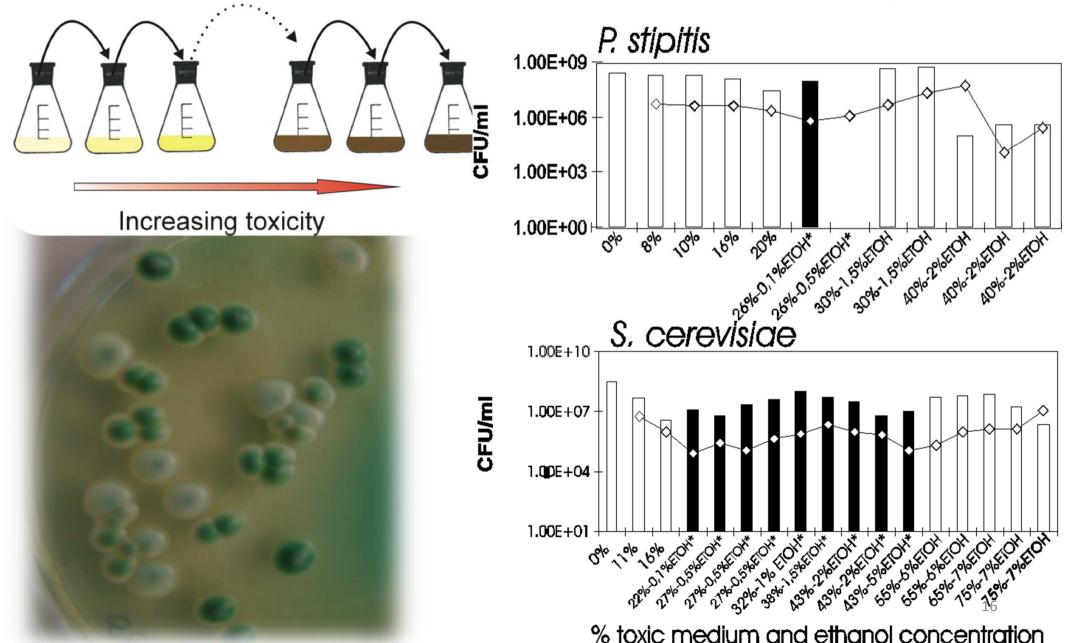
Gravimetric mixing


Stirring in vertical bioreactor

Stirring in horrizonatl bioreactor13


EFFECT OF MIXING

PRODUCTION OF CLEAN SUGARS

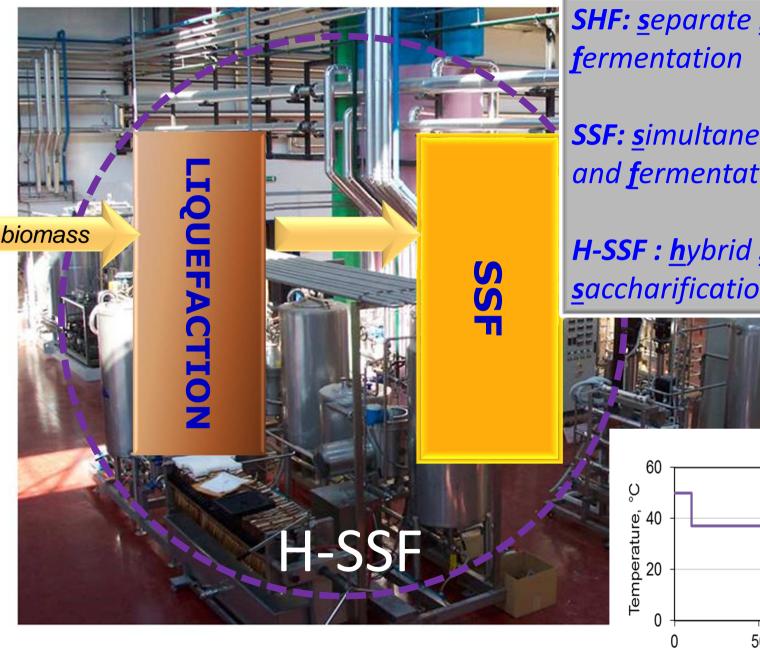


ER LE NUOVE TECNOLOGI

ROBUST MICROORGANISMS

□ CFU/ml → CFU/ml inoculum [time 0]

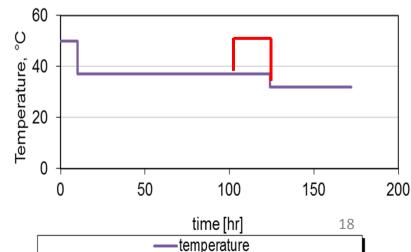
PER LE NUOVE TECNOLOGIE, L'ENERGI/ E LO SVILUPPO ECONOMICO SOSTENIBILI



FERMENTATION WITH ADAPTED MICROORGANIMS

Yeast(s) conditions	Ca-Alg Process scheme	inate +	yeast eads uptake	P/S	% xylose consumption at maximum ethanol	% glucose consumption at ethanol maximum	Y%
6	COF		4,70E+08	4	16	100	68
WILD	COF		1,102.00	4	16	100	66
TTLE	COF		6,80E+08	0,25	16	100	64
	COF		0,002.00	0,25	16	100	63
	COF			4	20	97	68
	COF				17	100	60
P. adapted	COF				17	93	56
up to 40%	COF	• •	• +09		33	100	61
up 10 +0 70	COF	• •			31	100	53
	COF	• 1			34	100	51
	COT	• •	•		67	100	49
P. adapted	COF		3,25E+06	4	34	100	72
up to 40%	COF		0,202,00	4	42	100	80
(repeated	COF		3 TOFLOT CaCl	0,25	41	100	64
cycles)	Caradgii	nate gel	beads' ²	0,25	33	100	71
P. and S.	SEQ	10^9 [S]	1,36x10^9[P]	4	73	100	61
adapted +							69
EtOH	SEQ	10^9 [S]	5x10^9[P]	4	39	100	00
	ermentati Juential fe		on				17

PROCESS OPTIMIZATION



SHF: <u>s</u>eparate <u>h</u>ydrolysis and <u>f</u>ermentation

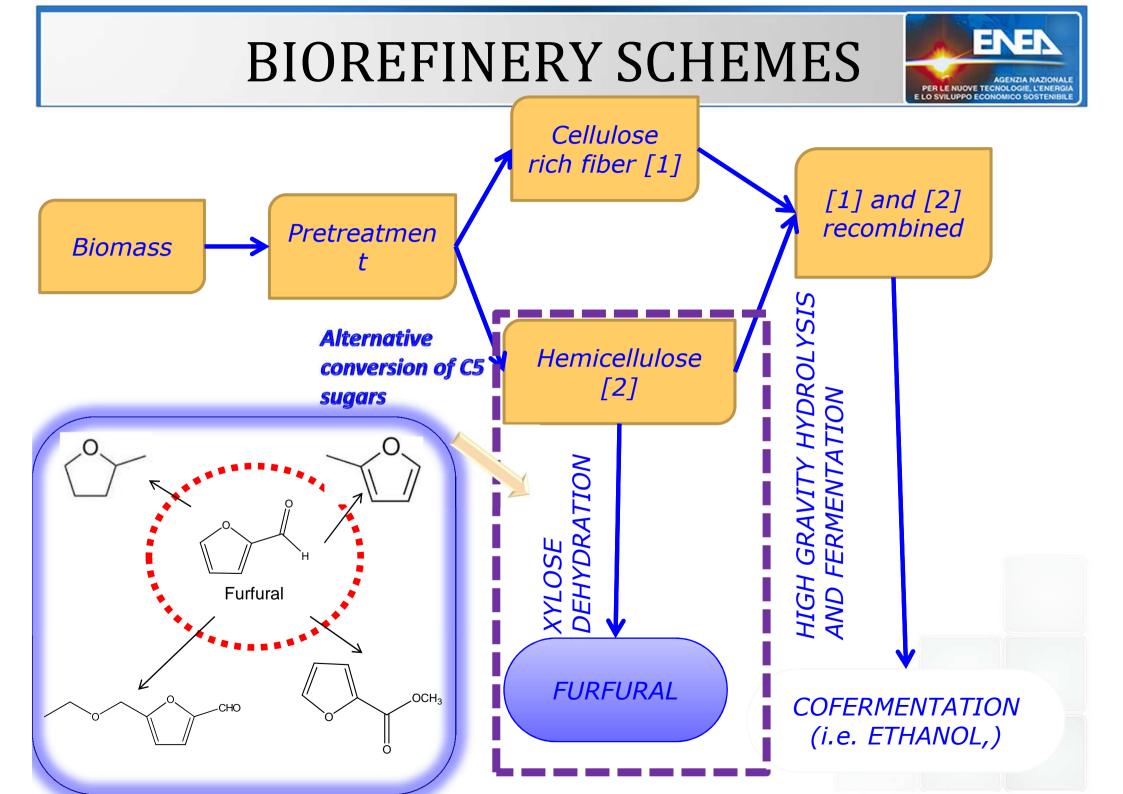
SSF: <u>s</u>imultaneous <u>s</u>accharification and <u>f</u>ermentation

H-SSF : <u>h</u>ybrid <u>s</u>imultaneous <u>s</u>accharification and <u>f</u>ermentation

PRODUCTION OF BIOETHANOL

. .

. .


Enzyme dosage [g/g	····Microrganisms ···	Process	Yeast •••inoculation•••	TLICI	Ethanol	Overall glucose [g/L]	BIO
gracanj	S. cerevisiae		mocatareron		(-/0446)		Doforonco
0,22	(M861) S. cerevisiae	SHF	В	32°C	3,5	68	Reference
			В	32°C	3,3		
0,085	(SIGMA II)	HSSF	D	32°C	3,3	66	
0,22	K marxianus k6858	H SSF	FB 1	32-50°C	1,4	74	<u> </u>
0,085	S. cerevisiae (SIGMA II)	HSSF	FB 1	37-50°C	3,8	75	2
0,085	S. cerevisiae (SIGMA II)	HSSF	FB 3	37-50°C	3,8	75	CO
0,085	S. cerevisiae (SIGMA II)	HSSF	В	37°C	3,7	75	S
0,22	K marxianus k6858	H SSF	В	32°C	1,6	77	e
0,22	S. cerevisiae (SIGMA II)	HSSF	FB 3	37-50°C	4,2	84	re
0,22	K. marxianus k6271	H SSF	В	32°C	4,4	85	8
0,22	S. cerevisiae (SIGMA II)	HSSF	В	37°C	4,2	90	Ve
0,22	S. cerevisiae (SIGMA II)	H SSF	В	32°C	4,6	91	ere
0,22	K. marxianus k6271	H SSF	FB 2	32-50°C	4,7	91	e
0,22	S. cerevisiae (M861)	H SSF	В	32°C	4,8	92	
0,22	S. cerevisiae (M861)	H SSF	FB 2	32-50°C	4,7	93	
0,22	S. cerevisiae (SIGMA II)	H SSF	FB 2	32-50°C	5,0	98	19

ENE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AGENZIA NAZIONALE

MICROWAVES-ASSISTED DEHYDRATION OF **SUGARS TO FURAN COMPOUNDS**

Organic phase

(1-butanol)

resin,

or HCI, NaCI

•The advantages of controlled microwave dehydration: Decreased reaction time and energy; **Reduced formation of secondary by products;** •The advantages of the reactions in biphasic system: Extraction of the reaction product as it is formed; Use of biomass derived solvent (butanol) •The advantages of using solid catalysts (resins, zeolites) **Higher selectivity** Cation-exchanging

DEHYDRATION OF XYLAN TO FURFURAL

process (min)	T °C	[H+]	Resin	Yield [g/g _{substrate} %	Sugar conversion %	selectivety
10	120		2,5	1,3	5	44
10	120		2	2,0	10	30
10	120		1,5	3,1	13	37
10	150	0,12		3,4	42	11
10	150	0,08		3,7	49	12
10	150	0,16		4,7	35	21
30	120		1,5	7,9	19	66
30	120		2	9,4	30	48
30	120		2,5	11,4	32	56
10	150	0,28		24,1	45	85
5	150		1,5	24,6	70	55
10	150		1,5	30,7	91	53
10	180	0,28		49,4	95	81

The process optimization requires the design of efficient catalysts

CONCLUSIONS

- The success of the various biorefineries concepts also depends on the development of (energetically) efficient processes which use limited amounts of chemicals/solvents, low catalysts dosages and catalyst recovery.
- ENEA is actively working on the development of green technologies and processes.
- A number of technologies and processes are available for the production and conversion of sugars
- Technologies and know- how developed for biofuels can be used to support the development of novel biorefineries concepts

THANKS FOR THE ATTENTION

isabella.debari@enea.it +39 0835974313

