IPRs and the role public and levy funded research: some lessons from international experience

OECD Conference on Agricultural Knowledge Systems (AKS) Responding to Global Food Security and Climate Change Challenges

15-17 June 2011, OECD Conference Centre, Paris

Richard Gray University of Saskatchewan

Background

- Well performing Agricultural Knowledge Systems (AKS) foster productivity improvement by generating knowledge and developing technologies that are put into use by the agricultural sector.
- This not only increases profitability and economic surplus it also contributes to the ability of the sector to address food security and environmental goals
- * the policies of the public sector have been critical in shaping most AKS

Why not just rely on strong IPRs?

- Stronger intellectual property rights (IPRs) have successfully stimulated private investment in agricultural research, development and extension (RD&E)
- * What is the appropriate mix of IPRs, public sector and levy based RD&E, and supportive public policy?
- What does economic theory (incentives) and international experience tell us?

Objectives

*To describe an economic framework for AKS policy that acknowledges toll goods

*To use international examples to illustrate:

* challenges that can arise in AKS systems

* effective AKS systems

Public Goods and IPRs

- * public goods are non-excludable and non-rival in use
- Governments provide public goods or subsidize quasi-public goods – often not well... many demands for finite resources
- * Or... they assign property rights or intellectual property rights IPRs in the case of research

The Public Good Market Failure

IPR Impact on Private RD&E

Policy Implications

➢IPRs stimulate private RD&E – mainly development when products are close to a well defined market

➤incomplete property rights including positive externalities (health, environment) require additional incentives to reach optimal investment issues

Complementary knowledge is often lacks IPRs – this is a role for government and levy-based research

The non-rival nature of knowledge

- * One firms use of knowledge does not reduce the amount available for other firms i.e., non-rival
- Marginal costs are close to zero. E.g. The first hectare of new wheat variety costs \$1 million, the second hectare costs \$50.
- With strong IPRs knowledge becomes a *toll good* and has a cost structure of a *natural monopoly*
- Cannot be a competitive industry... oligopoly structure at best. If
 Price = Marginal Cost then firms have negative profits

Knowledge with IPRs....a toll good

	Rival	Non-Rival
Excludable	Private goods	Knowledge Toll goods
Non- Excludable	Common pool goods	Public goods

The cost structure of toll goods Price Average Cost (N=2) Average Cost (N=1) **Marginal Cost** 0

Quantity

The economic impact of entry

The entry dilemma in a toll good industry

- One large firm will have the lowest industry average cost and will be most efficient from a knowledge production perspective (i.e. a natural monopoly)
- A monopoly will use its *market power* to price above marginal cost and market power will limit investment incentives
- More firms will *reduce market power* but will drive up costs through *multiplication of effort* and *fragmentation of knowledge*
- This entry dilemma cannot be avoided in a private *toll good* industry

Fragmentation and Duplication in AKS

- * Pooling knowledge reduces cost because it has no opportunity cost
- * Independent firms could license their IP reducing industry costs but:
 - * They may strategically protect their assets
 - * There are very many pieces of IP e.g. ((Stress AND tolerance) AND wheat) -3054 patents – *a patent thicket (search US patent data base March 20, 2011)*
 - There are often any owners of complementary assets leading to prohibtive transactions costs to negotiate access to other private IP – anticommons issue
- * In transgenic crops most firms and public institutions have purchased and developed their own research platforms to get freedom to operate \rightarrow High cost duplication of effort

Toll goods exist in other sectors

In other sectors *toll goods* are provided by:

- 1. government, local government (e.g. Roads, bridges)
- 2. private markets where profits are regulated (e.g. electrical utilities)
- 3. private markets where industry entry is encouraged through regulation (e.g. telecom)
- 4. Non-profit organisations, cooperatives as a club good with/without government support (buying clubs, credit unions etc.)

IPR Related Issues

***** Three general forms of AKS market failure

- Lack of private research incentives/ funding issues (solved by IPRs)
- Market power monopoly/oligopoly pricing reduces adoption &use
- Research fragmentation restricts entry and increases cost

IPRs-Market Power-Fragmentation

Lack of Research Funding

The Canadian Canola Outcome

- * Hybrid seed IPRs are secure
- ***** \$50 million in private investment (CSTA, 2007)
- ***** faster yield increases than publically funded wheat
- ***** However:
 - * Two firms dominate
 - Seed costs \$100 -\$140 per hectare or 12-16% of gross revenue – these exceed land rents! and are steadily increasing
 - About 10% of \$500 Million in rents gets reinvested in breeding
- Hybrid corn looks similar concentration/pricing/investment

Knowledge Fragmentation in
* Until recently almost no exchange of IP between competing multi-national biotic firms in Canola

- * e.g. Bayer had the highest yielding/disease resistant (Invigor) germplasm while Monsanto had the best HT system.
- * Given their non-rival nature it makes sense to combine these traits (i.e. anti-common's issue)

Cross licensing has solved some of these problems

Models of levy based industry ownership

- * Saskatchewan Pulse Growers(SPG)
 - Producers voted for a 1% non-refundable levy for research in 1984
 - * SPG fund research and manage their IP on a contractual basis
 - * Very successful widespread adoption of pulses and high rates of return
 - * SPG have negotiated IP access aggreements with industry
 - ***** The both duplication and market power issue

Canadian AKS Outcomes

Models of levy based industry ownership

- ***** Grains Research Development Corporation
 - * Established in 1988 in Australia
 - * 1% statutory levy matched 0.5% by national government
 - * industry nominated Board of Directors & regional panels
 - * 27 crops \$A 100 in revenue per year
 - * GRDC funds nearly all aspects of RD&E
 - * has replaced some State level funding
- * 2005-2008 created three wheat breeding companies GRDC/public/private shareholders through tender
- * End Point Royalties will provide a substantial source of funding for these firms

The Future of Australian Wheat Breeding

- * EPRs create incentives similar to hybrids for industry consolidation and pricing
- * EPRs are steadily rising and will continue to rise as new varieties are better than older varieties
- * Will entry keep the breeding competitive? where will revenues be invested?
- * Will State and GRDC shareholding make a difference to pricing, investment or consolidation?
- * What will the industry look like in 2030?

The Royalty Model in France

Farmers pay an End Point Royalty on bread wheat varieties

- * The royalty rate of .5Euro/t is negotiated between farm organisation and the seed organisation for 3 year terms
- ***** The uniform EPR is simple to collect
- * Similar to a regulated utility rate used in other industries

Summary - Three Lessons

- Many aspects of RD&E cannot be protected by IPRs, leaving an important role for taxpayer and levy based funding.
- Private research industries produce toll goods where market power and research fragmentation will be persistent issues. Policy instruments can address pricing, entry and knowledge sharing.
- levy based RD&E can be effective giving voice to those who pay for and benefit from RD&E.

Questions?