Biorefinery The Theme of Next Generation Biofuels

International Conference on Green Industry in Asia

9-11 September, 2009 Manila, Philippines

Arvind Lali

Centre Coordinator Professor of Chemical Engineering DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Mumbai, INDIA

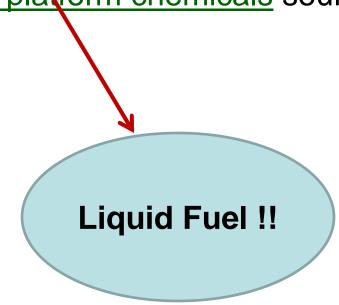
Current 'Organized' Energy Requirements

Primary (domestic)	40%
Transport	40%
Industry	20%

<u>Did you know</u>

Developing countries use renewable energy up to 40% as source of primary energy !! – Counted as <u>'unorganized sector'</u>

Share of crude oil and gas end use:


Transport/Primary Energy90%Chemical/products10%

- Alternative & renewable primary energy source
- Alternative & <u>renewable transport fuel</u> source
- Alternative & renewable platform chemicals source

- Alternative & <u>renewable primary energy</u> source
- Alternative & renewable transport fuel source
- Alternative & renewable platform chemicals source

Aimed at generating power

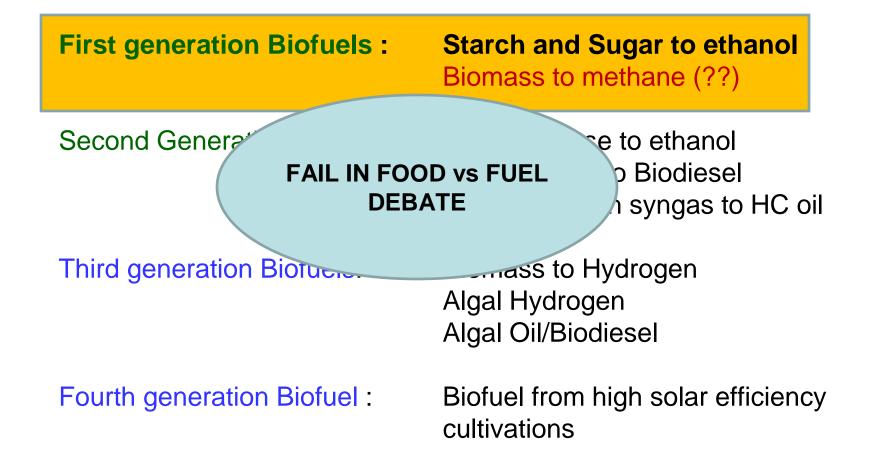
- Alternative & renewable primary energy source
- Alternative & <u>renewable transport fuel</u> source
- Alternative & renewable platform chemicals source

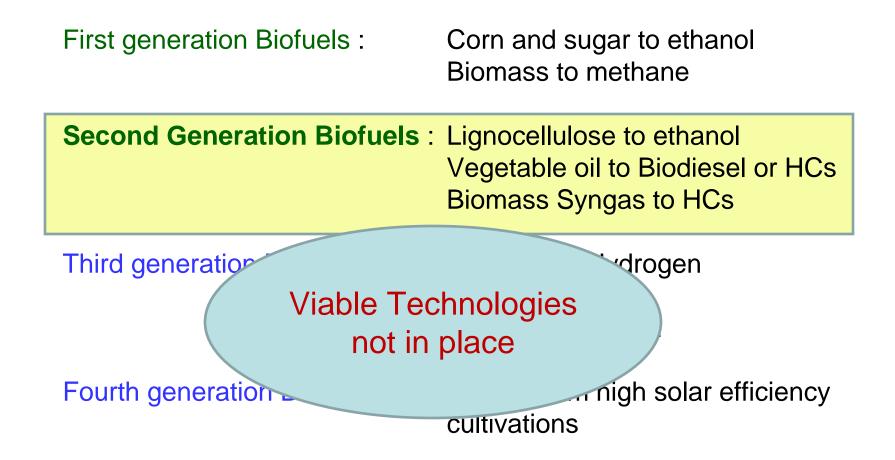
- Alternative & renewable primary energy source
- Alternative & renewable transport fuel source
- Alternative & renewable platform chemicals source

Platform chemicals alongside ?

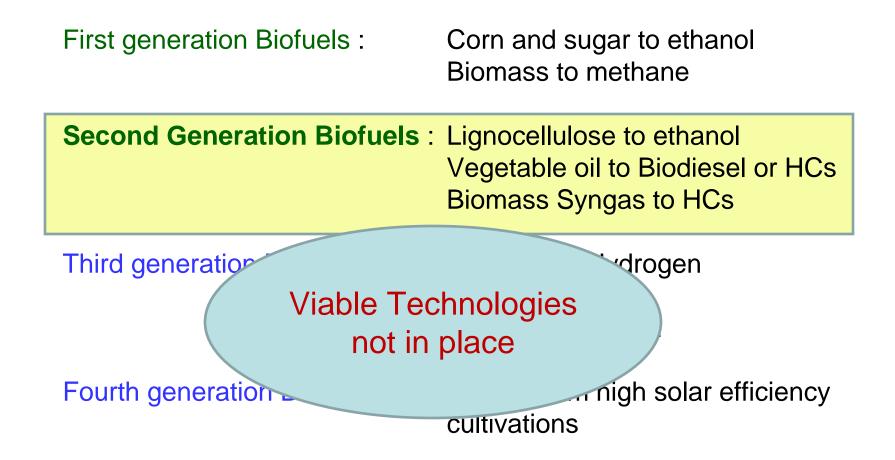
Liquid Fuel !!

Why biofuels ?


Three Objectives :


1. To reduce dependence on petroleum *India imports 75% fuel, will rise to 90% by 2020*

2. To reduce green house has (GHG) emissions Alarming rise in Carbon dioxide levels


3. To reduce the cost of fuel against escalating crude oil prices

First generation Biofuels :	Corn and sugar to ethanol Biomass to methane	
Second Generation Biofuels :	Lignocellulose to ethanol Vegetable oil to Biodiesel	
Challenge		
To use renewable source to produce Biofuels		
in a sustainable manner		
	Algal Oil/Biodiesel	
Fourth generation Biofuel :	Biofuel from high solar efficiency cultivations	

First generation Biofuels :	Corn and sugar to ethanol Biomass to methane
Second Generation Biofuels :	Lignocellulose to ethanol Vegetable oil to Biodiesel Fisher-Tropsch syngas to HC oil
Third generation Biofuels:	Biomass to Hydrogen Algal Hydrogen Algal Oil/Biodiesel
and Tec	ure : Science chnologies in oratories

Essential Requirements for Viable Technologies:

- Economically sustainable
- Ecologically sustainable

Important Points To Remember

- Renewable sources are
 - Technologically complex
 - Socio-politically complex
 - Ecologically complex
- Scale of handling entails
 - "waste' side-streams generation
 - High capital cost
 - Logistic complexities

The concept : BIOREFINERY

"A Biorefinery is collection of processes that utilizes a renewable biological or bio-based source to produce an end product, or products, in a manner that is a zero-waste producing, and whereby each component of the renewable biological or bio-based source, or a product there from, is converted or utilized in a manner to add value, and hence sustainability to the plant."

KEY TO SUSTAINABILITY

Complete and Judicious Use of our Agricultural Produce

We can make a biorefinery out of :

Molasses alcohol fermentation plant Vegetable oil processing or Biodiesel plant Grain processing plant Dairy products plant Lignocellulosic ethanol plant

Biological or Bio-Based Renewable Resources

- Microbial/Contained Cell cultures
- Plants
- Animals

PLANTS - The All Important Renewable Source

Major Issues with Plants/Agriculture as Renewable Source

- Which plants ?
- Where do we grow them ?

India (and Asia) situation:

- Land per capita far less than USA, Canada,

Australia, Brazil

- Cannot use land that can grow food

Options :

- Develop **perennial crops** (Future of agriculture !)
- Use marginal lands and develop suitable crop varieties (why not food ?)
- Use present day agricultural crops completely and judiciously
- Use sea/ocean for growing 'plants' A VERY USEFUL OPTION

Utilization of Existing Agricultural Produce Non-food and non-fodder agricultural 'waste'

India Facts :

- Currently at 250 million ton/year
- Mostly put to low value utilization
- Can be used as feed-stock for
 - BioFuels
 - Chemical Building Blocks

Examples :

- Cotton stalks
- Wheat Straw
- Corn Cobs
- Banana stem

Biomass Availability- INDIA

Non-food Non-fodder Lignocellulosic Biomass sources:

- Cotton Stalk
- Wheat Straw
- Rice Straw
- Sugar Cane tops

Shows Annual availability > 500 MT !! Bioethanol potential > 100 MT/year

Transport Energy Consumption in India = 50 million tons/year

A 50km x 50km area

→ 2.5 MMT biomass/year
→1 million L EtOH/day (~300MW plant)
→ Large Plant !!

	Production Million tons		
Crop residues	1994	2010 (projected)	
Field based residues			
Cotton stalk	19.39	30.79	
Rice straw	214.35	284.99	
Wheat straw	103.48	159	
Maize Stalk	18.98	29.07	
Soybeans	12.87	34.87	
Jute stalk	4.58	1.21	
Sugarcane tops	68.12	117.97	
Ground nut straw	19	23.16	
Processing Based residue			
Rice Husk	32.57	43.31	
Rice Bran	10.13	13.46	
Maize cob	2.59	3.97	
Maize Husk	1.90	2.91	
Coconut shell	0.94	1.50	
Coconut husks	3.27	5.22	
Ground Nut Husk	3.94	4.80	
Sugarcane bagasse	65	114.04	
Coffee husk	0.36	0.28	

Crop/ha	Component	Ethanol/ha	Remarks
Cane :100t	Sugar (10%) Lignocellulosic dry residue (20%)	5000L 5000L*	*bad energy economy against burning of bagasse
Non-fodder agricultural residue : 7.5t	Lignocellulosic dry mass (100%)	2000L	@300Mt/y this meets liquid fuel requirement ***
Miscanthus or Switchgrass : 15t dry	Lignocellulose (100%)	7000L	For meeting all fuel demand requires 16 MHa cultivation**
Corn : 4t kernel 8t stover	Starch Lignocellulose	4000L 2000L	Case for combined crop utilization or only non-fodder use
Palm oil or Jatropha (5000L/ha)	Biodiesel from all oil incl. edible portion	5000L	Land required For meeting all India demand ~15Mha ie 10% India's cultivable land**

**Cultivable land in India=150Mha; 70Mha is wasteland

***Annual fuel consumption in India = 75Mt/year

Comparison between Cane-bioethanol and Biomass-bioethanol yields

Cane-Bioethanol

Cane yield/hectare Sugar yield/hectare (@ 10%)	100 ton (max) 10 ton
Bagasse + biomass yield	20 ton/Ha
Ethanol yield/hectare Additional ethanol from bagasse Total	5 ton 6 ton 11 ton

Biomass-Bioethanol (Energy Crop e.g. sorghum or switchgrass)

Dry biomass/hectare (max)	20 ton
Bioethanol yield/hectare	6 ton

Comparison of Bagasse (biomass) use for BioEthanol vs. Direct Combustion

Maximum power generation	: 1 KWH/kg bagasse (biomass)
BioEthanol generation	: 0.3 liter/kg bagasse (2 KWH/kg bagasse)
	USD 5 USD

Issue \rightarrow Primary Power vs. Liquid Fuel

Grain-Biomass Scenario in Philippines

Average Rice yield/Ha	3 to 4 ton/Ha
Average rice straw yield	5 ton/Ha
Philippines area under rice cultivation (Total area = 30 million Ha)	4.0 million Ha
Rice Straw/year	20 million ton/year
Bioethanol yield possible	6 million ton/year
Philippines area under corn cultivation	6 million Ha
Corn biomass/year	40 million ton/year
Bioethanol/year possible	12 million ton/year
TOTAL BIOMASS BIOETHANOL	18 million ton/year
Philippines Transport Fuel Consumption	10 million tons/year

POTENTIAL LOCAL FUEL SELF-SUFFICIENCY

India Case

Liquid transportation fuel consumption in India = 45 MT/year

Per capita liquid transport fuel consumption = 45 kg/year

Consumption in 50x50 km area = 150,000 kg/day (at 400 people/sq km)

Compare with Production capacity = 1,000,000 kg/day

Local Raw Material and Local Consumption Will reduce distribution costs that add almost 30-50% to our fuel bill !! Despite enormous potential Lignocellulosic Ethanol has not been commercially successful due to a number of reasons

Reasons : High Cost and High Risk

- Cost of Production > 1.50 USD/liter
- High capital cost (almost at atomic energy level)
- Waste generating and Non-ecofriendly Technologies

Other Reasons

- No complete demonstration of biomass ethanol technology *Despite pilot plants the overall economics unreliable*
- Biomass source is varied and uncertain *Technology varies with biomass source*
- Pretreatment technologies un-optimized and non-ecofriendly *Acid treatment technologies generate waste*
- Low confidence in enzymatic saccharification technology *Enzymes far from optimal contributors to cost*
- Low confidence in pentose fermentation technology Low confidence on xylose to ethanol conversion
- Biorefinery Concept Un-proven

No reliable information on impact of value added products

Production Comparison of Different Energy Sources Current Status

No.	Source	Capital cost per MW* (in million USD)	Production cost per KWH (in million USD)	Cost** USD/L
1	Bioethanol (Biomass)	1.00	0.05	1.50
2	Bioethanol (Corn)	0.60	0.06	0.80
2	Coal	1.00	0.01	-
3	Gas	0.60	0.02	-
4	Atomic energy	1.50	0.005	-

*1MW~1ML EtOH/year

** Incl. cost of capital

Other Biomass derived Liquid Fuel Options

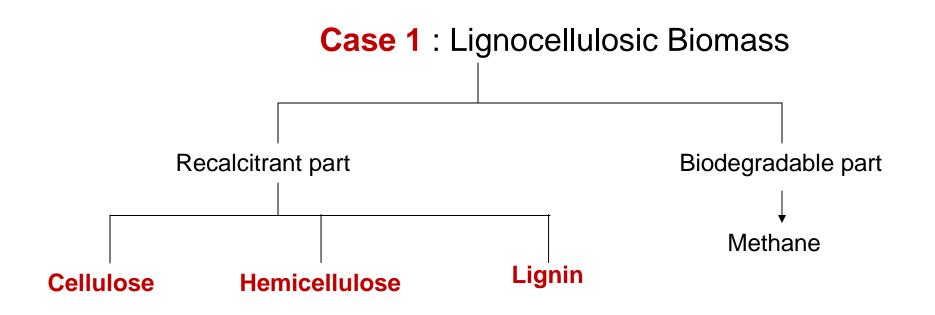
Biomass-to-Liquid (BTL) Technologies

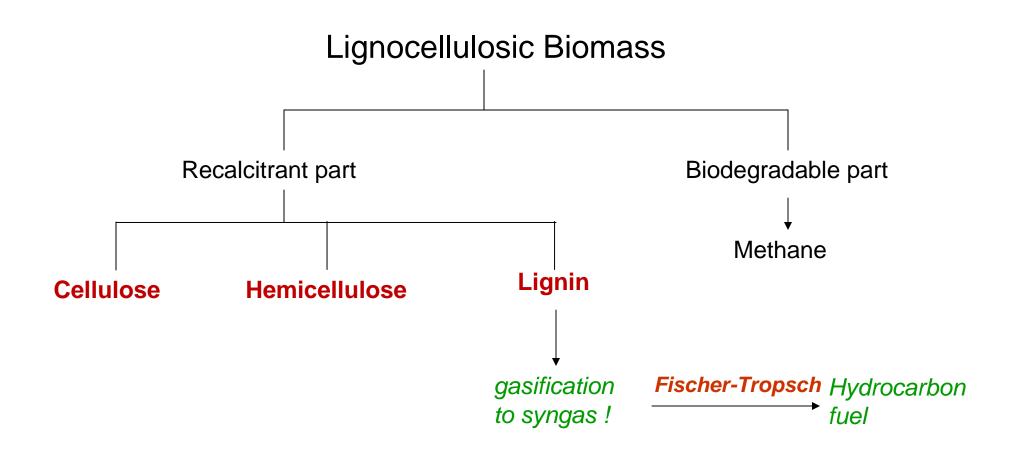
 $\begin{array}{l} \mbox{Biomass} \rightarrow \mbox{Syngas} \rightarrow \mbox{Hydrocarbons} \rightarrow \mbox{Gasoline/Diesel} \\ \mbox{OR} \\ \mbox{Biomass} \rightarrow \mbox{Pyrolysis} \rightarrow \mbox{Hydrocarbons} \rightarrow \mbox{Gasoline/Diesel} \end{array}$

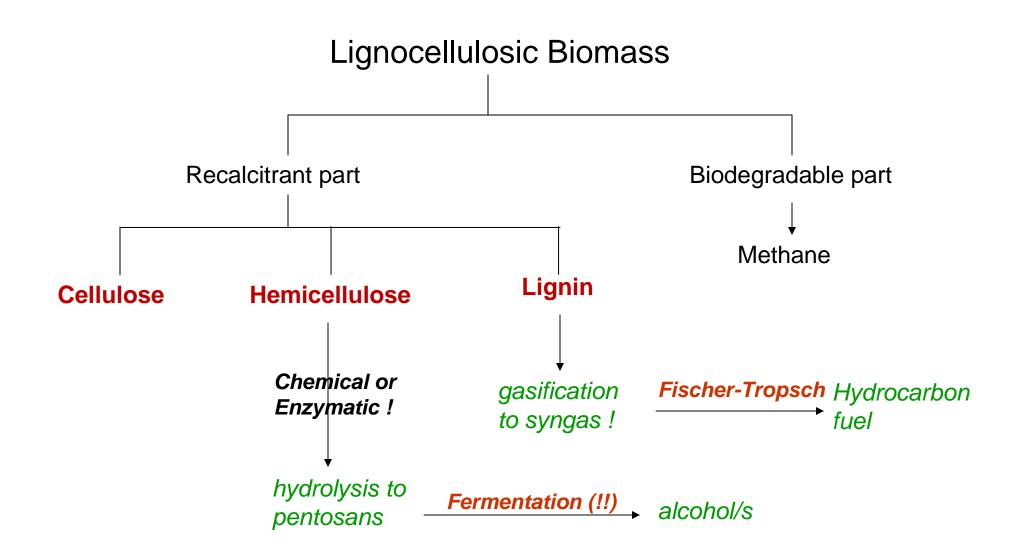
Maximum Liquid Yield : 50 gallons/ton biomass (BioEthanol yield : 100 gallon/ton)

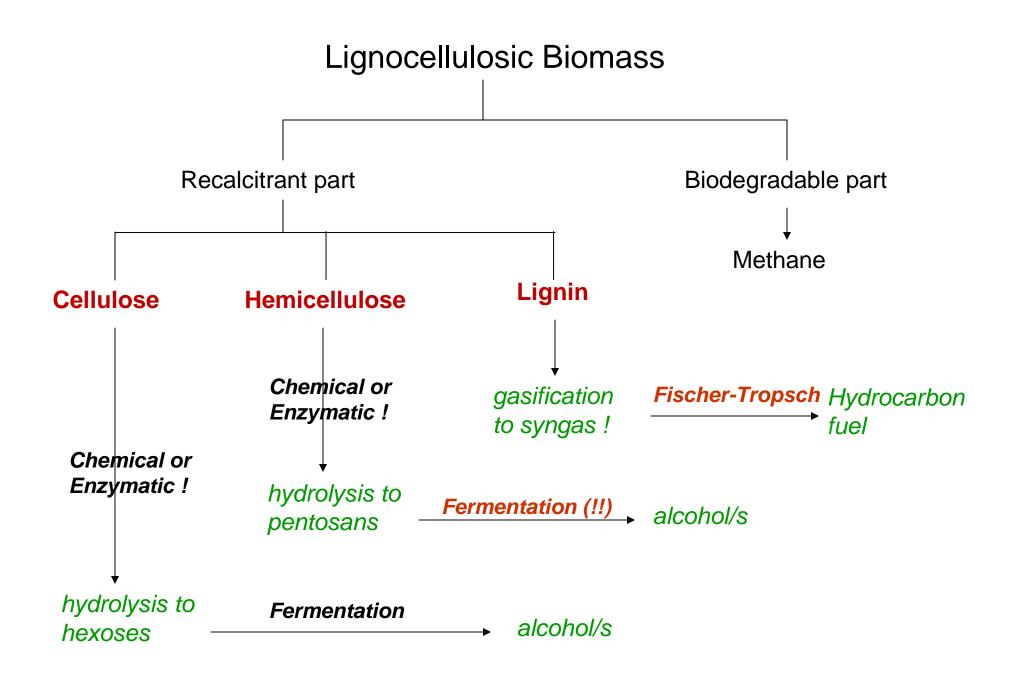
Biomass-to-Gas Technologies

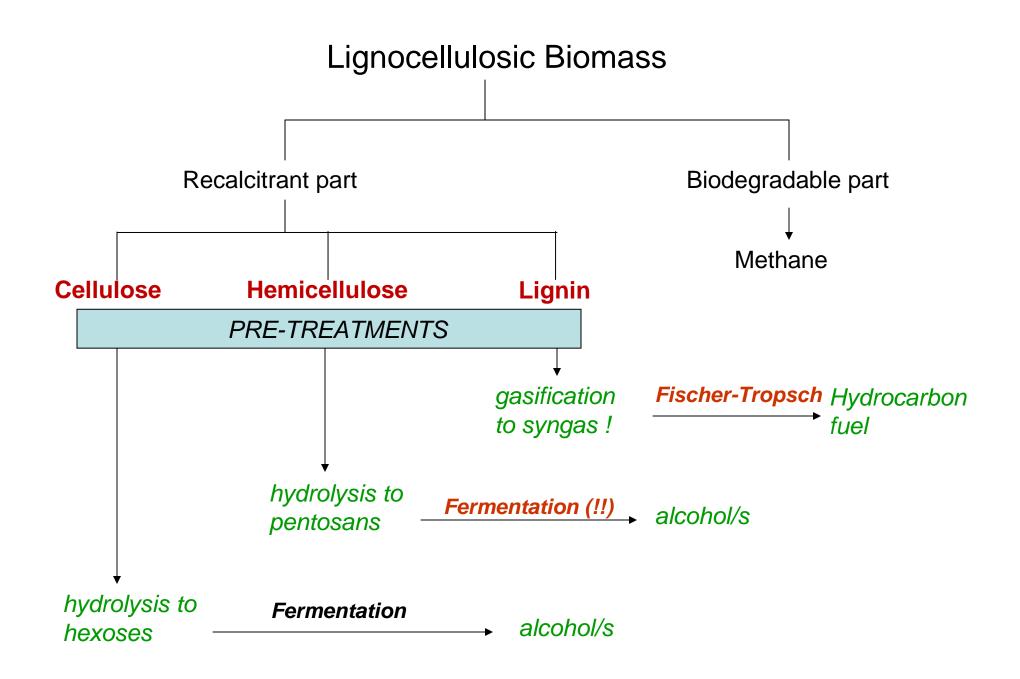
Biomass \rightarrow SCW Hydrolysis \rightarrow Hydrogen (Technologies not yet ready for commercialization) How to make the technologies eco-friendly and yet cost-competitive ?

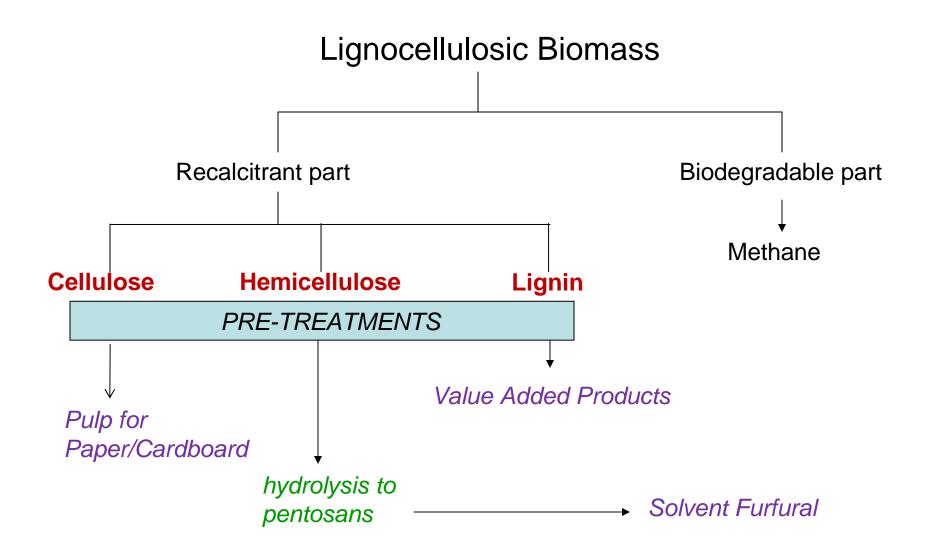

ANSWER : Development of the Biorefinery Concept

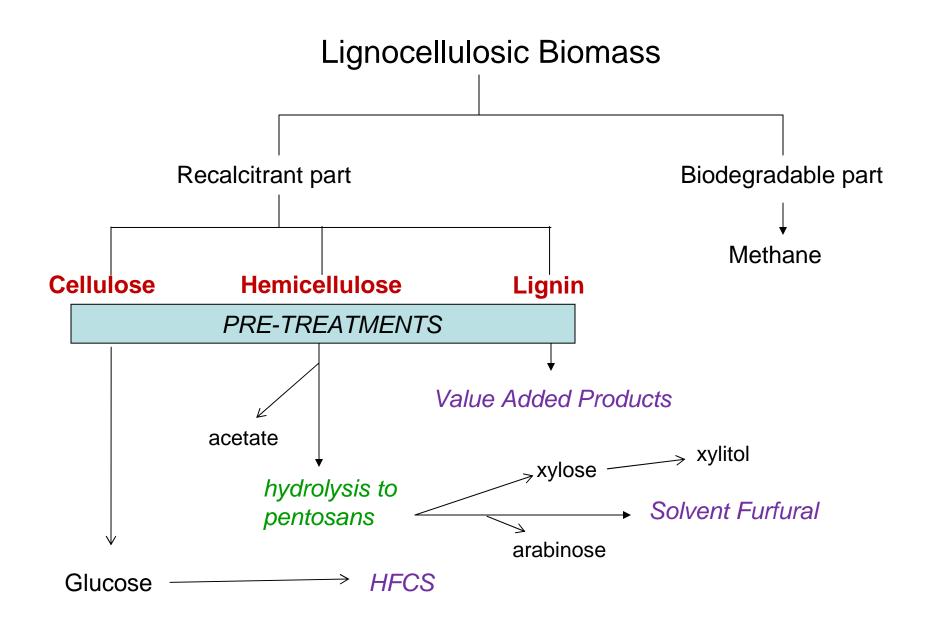

Three Case Studies

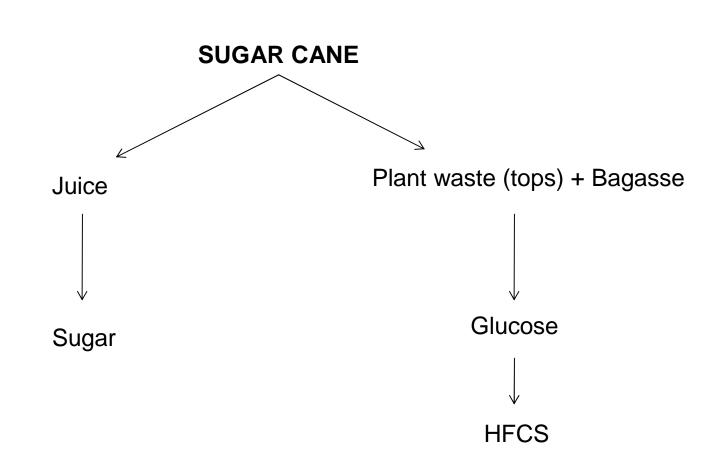

(A)Biomass BioEthanol


(B) Vegetable Oil to BioDiesel


(C) Algal Biofuels







POSSIBILITY

Case I – Sales from Conversion of total hexose and pentoses to ethanol

Basis : 1 ton of LBM subjected to Chemical/Thermal fractionation of LBM 90% hexose recovery from cellulose, and 54% pentose recovery from hemicellulose 40% hemicellulose converts into furfural

Products	Applications	Source					
		Softwood	Hardwood	Sugarcane Bagasse	Straw	Corn cob	Cotton stalk
Ethanol	Fuel (@ Rs. 13/ L)	4240	4705	3670	3160	3910	2330
Lignin	Fuel (@ Rs.3.00/kg)	1050	750	690	510	450	900
Acetic acid	Chemical @ Rs.30/kg	1710	1050	1110	1110	1140	1190
Furfural	Solvent @ Rs 50/kg	765	2050	1500	2650	3900	1020

95% yield of EtOH on hexose, and 68% yield on pentose

Case II – Sales from Conversion of hexose only to ethanol

Basis : 1 ton of LBM subjected to Improved fractionation processing of LBM 90% hexose recovery from cellulose, and 90% pentose recovery from hemicellulose All 100% hemicellulose converted into furfural or other products 95% yield of EtOH on hexose, and no ETOH from pentose (coumaric acids and uronic acids not considered)

Products	Applications	Source					
		Softwood	Hardwood	Sugarcane Bagasse	Straw	Corn cob	Cotton stalks
Ethanol	Fuel (only from cellulose) @ Rs. 13/L	3250	3588	2821	1956	2938	2015
Lignin	Solid Fuel (@ Rs. 3.00/kg)	1050	750	690	510	450	900
	Asphalt Extender (@ 9.00/ kg)	3300	2358	2169	1603	1415	2829
	Dispersing agent (@ Rs12/kg)	4400	3100	2900	2100	1900	3800
	Intermediate for synthesis of polymers/ resins (@ Rs. 30/kg)	11200	8000	7360	5440	4800	9600
Acetic acid	Chemical @ Rs.30/kg	1710	1050	1110	1110	1140	1190
Furfural	Solvent (@ Rs.50/kg)	2590	5340	5880	7910	10980	3100
Xylose	Xylose (@ Rs.50/kg)	1950	5100	3770	6110	9910	2650
Arabinose	Pharma/Food (@ Rs.5000kg)	105800	27200	322500	176400	151200	65500

Case 2 : Bio-Diesel

Major oil sources

- Palm Oil
- Jatropha Oil

Vegetable Oil Composition

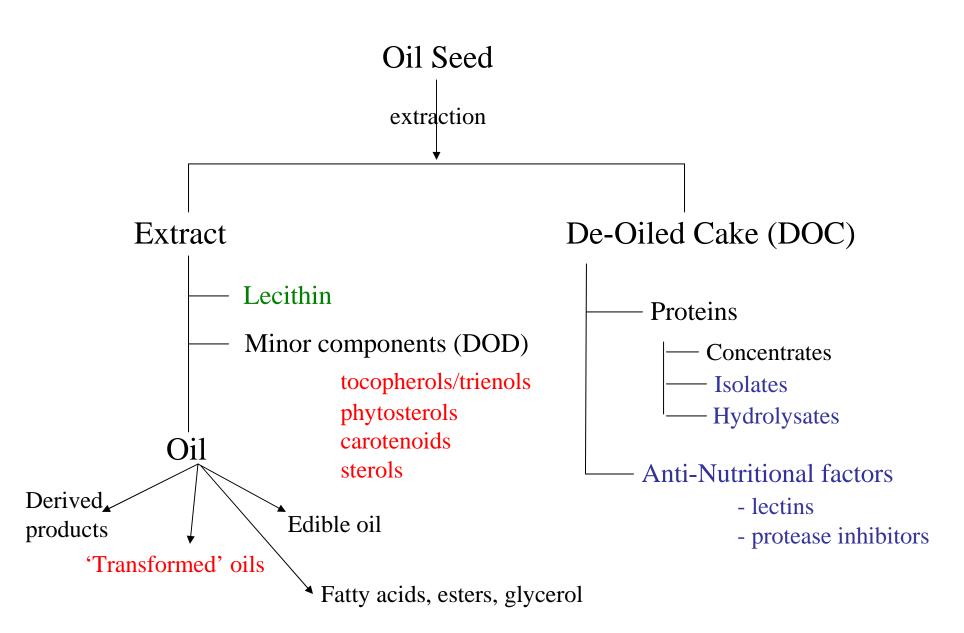
- Major components (triglycerides, FA, PUFA, MUFA)
- Minor components (phytosterols, tocopherol, carotenoids)

Edible oil	PUFA content per cent	Tocopherols, ppm		
		Tocopherol T1	Tocotrienol T3	Total T1+ T3
Palm oil	11	642	492	1,134
Safflower oil	73	801	-	801
Cotton seed oil	51	782	-	782
Sunflower oil	49	546	-	546
Groundnut oil	28	367	-	367
Mustard oil	22	576	-	756
Corn oil	57	732	-	732
Coconut oil	2.2	11	25	36
Ghee	1.8	25-30	-	30

Tocopherols and PUFA Content of Common Edible Oils Used in India

Tocopherol > USD 30/kg

Carotenoids content in Red Palm Oil


Carotene fraction	Per cent distribution	Actual content ppm
Total	-	545.0
Beta-carotene	47.4	258.0
a-carotene	37.0	202.0
cis o-carotene	6.9	37.6
Photoene	2.0	10.9
Lycopene	1.5	8.2
d-carotene	0.5	2.7
g-carotene	0.6	3.3
Beta-zea carotene	0.5	2.7
Cis beta-carotene	0.8	4.4
Neurosporene	traces	-
o-Zeacarotene	0.3	1.6
Phytofluene	1.2	6.5

Pure Natural Carotene : > 2000 USD/Kg

Red Palm Oil – Value Addition

Component	Content per Ton crude oil	Selling Price USD	Total Value per ton oil USD
Crude Oil	~100%	500/ton	500
Refined oil	~100%	1000/ton	1000
Tocopherols	~500gm	40/kg	40
Carotenes	~500gm	1000/kg	500

Vegetable Oil Bio-Refinery

Some statistical facts : India Scenario

Current liquid fuel required (petrol + diesel) = 65 Mt/year **Rising at >10%/year**

300 Mt biomass waste \rightarrow 75 Mt ethanol/year 30 MHa marginal land \rightarrow 300 Mt biomass \rightarrow 75 Mt ethanol/year

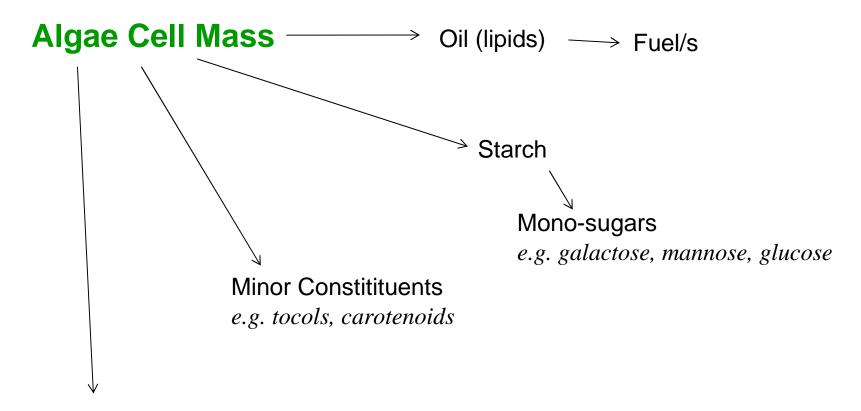
Is this enough, say in year 2050?

Both sources will stagnate with time.

Remember : Fuel consumption per capita in developing world almost 20 times lower than West !

WHAT NEXT ?

Possible Answer : Third Generation Biofuels


Algal : Algal Oil and Algal Starch

Strains of microalgae and other algae can produce (vegetable) Oil OR Starch *up to 50% of biomass*

Growth in water medium permits better use of sunlight and nutrient Carbon dioxide

1 hectare	\rightarrow 100 ton max biomass \rightarrow 5 ton ethanol
	\rightarrow 5 ton vegetable oil \rightarrow 5 ton biodiesel
	\rightarrow 25 ton algal oil \rightarrow 25 ton biodiesel

ALGAL BIOREFINERY

Other expressed metabolites *e.g. amino acids, proteins*

Technology Challenges:

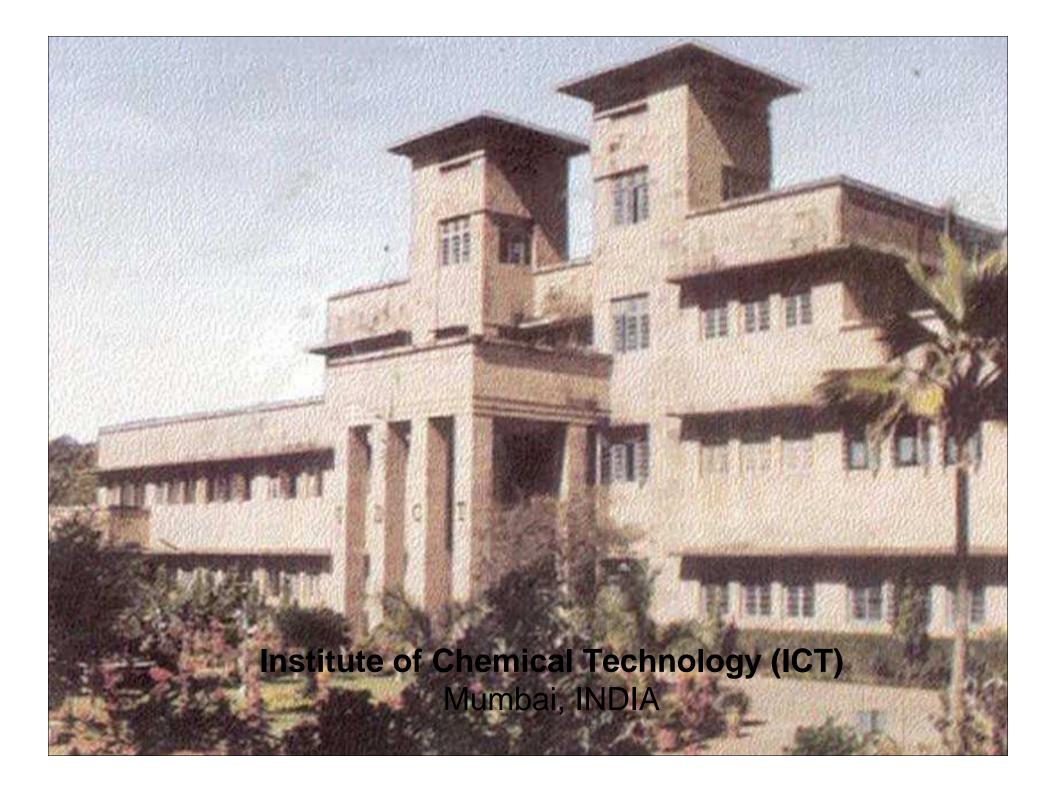
Photo-Bioreactor Design

Contained systems to prevent contamination

Carbon dioxide source and transport

Micro-nutrient supply

Land requirement—


- Marine algal systems
- Sea-ponds
- Lagoons
- Shallow back-waters

Concept : Off-shore Marine Algal Biorefinery

Need for research and development in

- Transformed/Improved robust algal species
- Efficient nutrient transport system
- Efficient temperature control systems
- Harvesting and Processing technologies

Strong Case for countries in Asia-Pacific region having long coast lines and marine water bodies

DBT-ICT Centre of Energy Biosciences

- India's first National Bioenergy Research Centre
- Being set up at an initial cost of Rs. 24.8 crore
- <u>Multidisciplinary Centre</u> with emphasis on cutting-edge technology development and transfer to Indian industry
- Networked with Institutions & Industry in India and abroad

>40 PhD scholars; several Senior Research Scientists and >10 faculty in different disciplines of modern biological sciences and bioengineering

Fermentation Technology

Extractive fermentation, Metabolomics and Metabolic Engineering for Optimized production of amino acids, Vitamins and Enzymes

Enzyme Technology

Design and Use of Stable, Reusable, Inexpensive Enzymes for organic and other Biotransformations

Second and Next Generation Biofuels BioAlcohols, BioDiesel, BioHydrogen, BioMethane DBT-ICT Centre for Energy Biosciences

Work Areas In Industrial Biotechnology

Synthetic Biology

Engineering Metabolic pathways for overproduction of primary metabolites, synthesis of designer proteins and Strain improvement

Separation Technology

Design and Applications of selective adsorptive and chromatographic separations for small and macromolecules

Algal Biotechnology

Design of algal systems for production of primary and secondary metabolites, as also starch, oil for biofuels, amino acids and other natural products The Facility at the Centre equipped for work In the following areas

- Molecular Engineering at the interface of Biology, Chemistry and Engineering
- Synthetic Biology
- Recombinant DNA technology
- Microbial Proteomics
- Metabolomics and Metabolic Engineering
- Fermentation Technology
- Enzyme Technology
- Downstream processing and Separation Technologies
- Bioinformatics and Molecular modeling

Academic and Research Collaborations

- School of Chemical Engineering, **Purdue University, USA** *Metabolomics and Metabolic Engineering*
- Centre for Tropical Crops and Biocommodities, **Queensland University of Technology, Brisbane, Australia** *Biomass handling, storage, transportation, and algal biofuels*
- College of Engineering, University of Saskatchewan, Canada Biomass-to-Liquid Technologies
- MAHYCO Research Laboratories, India Development of high yield Biomass varieties – ENERGY CROPS

Industrial Research Collaborations/Partnerships

- Resindion SRL, Italy (100% subsidiary of Mitsubishi Chemical Corporation) *Chromatographic Separations and Immobilized Enzyme Supports*
- Biorad Laboratories, India/USA ICT-BioRad Initiative in Chromatographic Purifications Bio-Chromatography and Proteomics for Biotech/Biopharma Industry
- Agilent Technologies, India/USA ICT-Agilent Initiative in Advanced Analytical Sciences Advanced Analytical Sciences in Biology and Chemistry
- HydroAir Research Italia, Italy Membrane Separations and Chromatographic Equipment
- Snowtech Equipments Pvt. Ltd., India Specialized Equipment Design, Fabrication and Erection
- Novozymes, South Asia and Denmark *Enzymes Design and Supply*
- Advanced Enzyme Technologies Ltd., India
- Enzyme Design and Supply

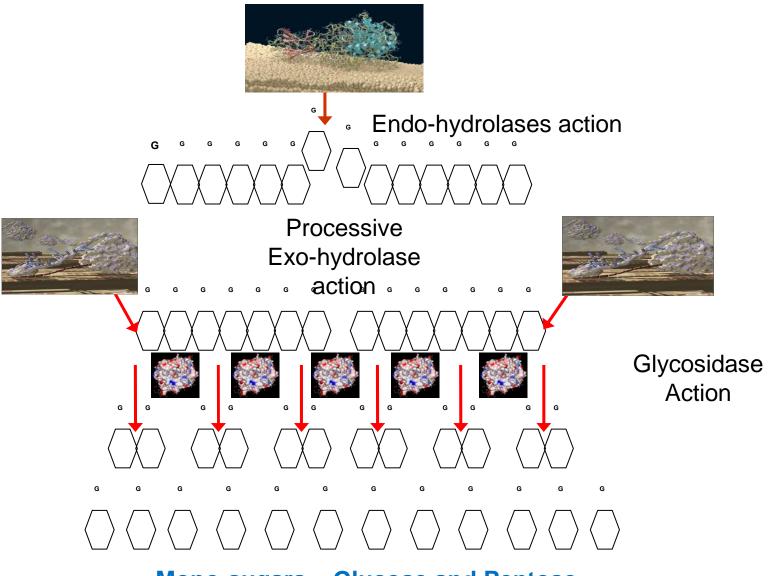
CENTRAL THEME

To Develop Alternative Energy Technologies

- Through intervention of Biological Sciences
- Specific Emphasis on Renewable Liquid Fuel
- Innovation and Translation of Technologies

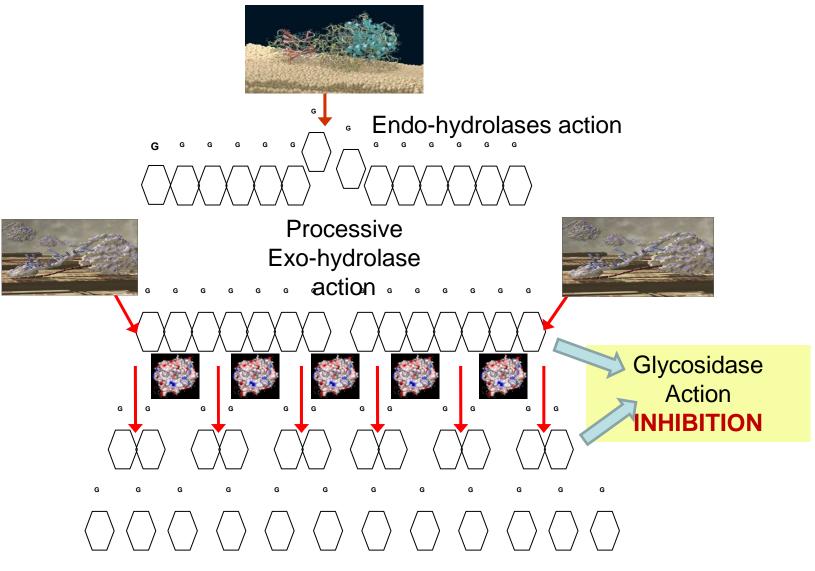
ICT Technology for Lignocellulosic Ethanol

Salient Features of the ICT Technology (Patents filed)


- Novel combination of known fractionation technologies to obtain 'homogeneous' fractions of CELLULOSE; HEMICELLULOSE AND LIGNIN
- 2. Two Step Enzymatic Hydrolysis of cellulose and hemicellulose
- 3. Two Step combination of Membrane Reactor and Column Enzyme Reactor to permit reuse of enzymes over many cycles
- 4. All steps pretreatment, fractionation and hydrolysis to fermentable sugars and finally ethanol operated in continuous reactor systems
- 5. Both glucose and xylose converted to ethanol in near theoretical yields using indigenous mutated strains

Biomass Fractionation

The Novel combination Technology


- Converts 'toughest' biomass to 'soft' biomass to CELLULOSE; HEMICELLULOSE AND LIGNIN
- 125°C Alkaline Hydrolysis : Mild Conditions
- No un-desirable derivatives
- Products ideal for next step enzyme hydrolysis
- Continuous Process Easy to control
- Lignin recovered intact for value-added uses
- Complete alkali recovery
- Recovery of acetic acid, silicates, uronates, xylose and arabinose

Enzymatic hydrolysis of cellulose/hemicellulose

Mono-sugars – Glucose and Pentose

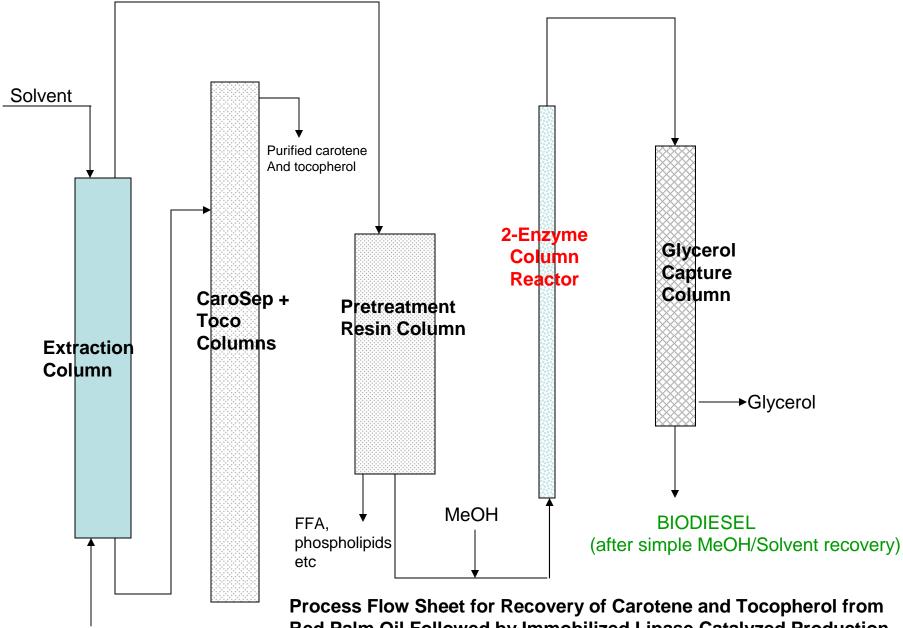
Enzymatic hydrolysis of cellulose/hemicellulose

Mono-sugars – Glucose and Pentose

Two Step Enzyme Hydrolysis

- Use Endo- and Exo- Enzymes separate from Glycosidase
- Reaction speeded up 6 times by Division of enzyme action in two steps
- Complete Hydrolysis of cellulose to glucose and hemicellulose to pentose (xylose)

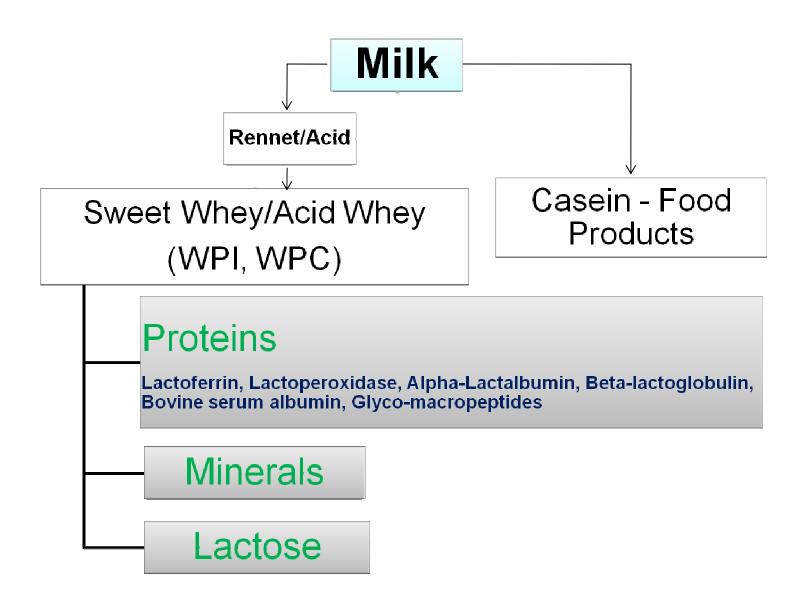
Features/Advantages of the Technology


- Brings down enzyme cost by factor of more than 5
- Brings down energy costs esp. in heat form
- Fractionation produces clean substrates
- Results in longer life of both enzyme reactors and membranes
- Continuous Technology reduces capital cost component
- Both glucose and xylose converted to ethanol
- Ethanol yield per ton of dry biomass >300L
- Estimated cost of production of Ethanol < USD 0.50/L

Important Events

- Patents filed for
 - Two Step Enzyme Process
 - Combination of membrane + immobilized reactors process
 - Composite reactor technology
 - Lignin separation by dual electrolyte process
- MOU signed with India Glycols Limited, Uttrakhand for Pilot plant Design and Commissioning by Dec. 2009 at capacity of 10 ton biomass/day

Other Biorefinery Concepts : ICT Technologies


- Vegetable Oil Biorefinery
- Milk Biorefinery
- Starch/Grain Biorefinery

RED PALM OIL

Red Palm Oil Followed by Immobilized Lipase Catalyzed Production of Biodiesel coupled with On-line glycerol separation

Milk Biorefinery

Starch/Grain Biorefinery

Grain (corn, wheat, rice) Starch/flour Oil Gluten Minor constituents (ferulic acid, antioxidants) Starch derivatives (Soluble fiber, maltose, glucose, HFCS)

Summary Points

- 1. Farmer can produce both FOOD and FUEL together
- 2. Agriculture needs to turned into Biorefinery based Industry
- 3. Bio-based products not only for energy but also for future platform chemical building blocks
- 4. Need to seriously explore 'farming' in the sea

Thank You for your kind attention and patience arvindlali@yahoo.com